IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1987

Synthesis of a new tetradentate phosphine and its coordination chemistry with group 10 metals

Colleen Margaret Duff *Iowa State University*

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the <u>Inorganic Chemistry Commons</u>

Recommended Citation

Duff, Colleen Margaret, "Synthesis of a new tetradentate phosphine and its coordination chemistry with group 10 metals " (1987). *Retrospective Theses and Dissertations*. 8635. https://lib.dr.iastate.edu/rtd/8635

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

INFORMATION TO USERS

The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a $17" \times 23"$ black and white photographic print for an additional charge.

Photographs included in the original manuscript have been reproduced xerographically in this copy. 35 mm slides or $6'' \times 9''$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA

.

.

- -

•

.....

.....

Order Number 8805065

Synthesis of a new tetradentate phosphine and its coordination chemistry with group 10 metals

Duff, Colleen Margaret, Ph.D.

Iowa State University, 1987

.

.

Γ

• • • • • • • • •

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark $\sqrt{}$.

- 1. Glossy photographs or pages _____
- 2. Colored illustrations, paper or print _____
- 3. Photographs with dark background _____
- 4. Illustrations are poor copy _____
- 5. Pages with black marks, not original copy
- 6. Print shows through as there is text on both sides of page _____
- 7. Indistinct, broken or small print on several pages
- 8. Print exceeds margin requirements
- 9. Tightly bound copy with print lost in spine _____
- 10. Computer printout pages with indistinct print
- 11. Page(s) ______ lacking when material received, and not available from school or author.
- 12. Page(s) ______ seem to be missing in numbering only as text follows.
- 13. Two pages numbered _____. Text follows.
- 14. Curling and wrinkled pages _____

15. Dissertation contains pages with print at a slant, filmed as received

16. Other_____

U·M·I

• •----

• • ----

Synthesis of a new tetradentate phosphine and its coordination chemistry with group 10 metals

Ъy

Colleen Margaret Duff

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Department: Chemistry Major: Inorganic Chemistry

Approved:

Signature was redacted for privacy.

(In Charge of Major Work

Signature was redacted for privacy.

For the Major Department

Signature was redacted for privacy.

For the Graduate College

Iowa State University Ames, Iowa

TABLE OF CONTENTS

	PAGE
DEDICATION	v
INTRODUCTION: QUALITATIVE AND QUANTITATIVE LIGAND EFFECTS AND THEIR APPLICATION IN GROUP 10 METAL COMPLEXES	1
LIGAND DESIGN	2
COMPLEXES OF GROUP 10 METALS	21
STATEMENT OF RESEARCH PROJECT	43
REFERENCES	47
SECTION I. PALLADIUM(II) AND NICKEL(II) COMPLEXES OF A PHOSPHINE POCKET LIGAND	51
INTRODUCTION	52
EXPERIMENTAL	55
RESULTS AND DISCUSSION	67
TABLES	96
REFERENCES	113
SECTION II. REACTION OF HALIDES WITH A STERICALLY HINDERED TETRAPHOSPHINE Pd(II)	
COMPLEX	116

- INTRODUCTION 117
- EXPERIMENTAL 119

RESULTS 122

DISCUSSION 129

المناديب المحموليات مو

• • • • • • • • •

133

TABLES

REFERENCES 136

SECTION III. OXI TO DIMETHYLSULFON	[DATION OF DIMETHYLSULFOXIDE NE BY A Pd(II) TETRAPHOSPHINE	
COMPLEX		137
	INTRODUCTION	138
	EXPERIMENTAL	140
	RESULTS	147
	DISCUSSION	154
	TABLES	161
	REFERENCES	171

SECTION IV. REACTIONS OF (COD)PtI₂ AND THE FORMATION OF AN OLIGOMERIC FIVE-COORDINATE Pt(II) PHOSPHINE COMPLEX

INTRODUCTION	173

- EXPERIMENTAL 174
- RESULTS 178
- DISCUSSION 194
- TABLES 205
- REFERENCES 209

SUMMARY

...

210

.

	PAGE
APPENDIX I. SUPPLEMENTARY DATA FOR THE CRYSTALLOGRAPHIC ANALYSIS OF [Ph ₂ P(O)CH ₂) ₂ CH] ₂	213
APPENDIX II. SUPPLEMENTARY DATA FOR THE CRYSTALLOGRAPHIC ANALYSIS OF (Cl ₂ Pd) ₂ (1)	225
APPENDIX III. SUPPLEMENTARY DATA FOR THE CRYSTALLOGRAPHIC ANALYSIS OF Cl2Pd(Ph2PCH2)2C2H2(CH2P(O)Ph2)2	239
ACKNOWLEDGMENTS	258

DEDICATION

To Michelle Louise and Richard McCloud

• • • • • • • •

INTRODUCTION: QUALITATIVE AND QUANTITATIVE LIGAND EFFECTS AND THEIR APPLICATION IN GROUP 10 METAL COMPLEXES

LIGAND DESIGN

Metal phosphine complexes display a tremendous range of reactivity and selectivity. The versatility of phosphines makes them particularly well suited as ligands for transition metals and through new synthetic routes, organometallic chemists are rapidly becoming able to custom design ligands to display the electronic and geometric and steric properties they desire. The physical and chemical properties of such metallic compounds vary with the electronic and steric properties of the coordinated ligands.

Changing substituents on the phosphorus markedly alters the character of a phosphine. Electron withdrawing groups such as halides or alcoxides decrease the Bronsted basicity of the phosphorus lone pair by induction. This is accompanied by an increase in the availability of phosphorus orbitals for back donation from filled metal d orbitals. Conversely, alkyl or other electron donating substituents on phosphorus increases the basicity of the phosphorus lone pair and decreases the availability of phosphorus orbitals for back donation from the metal. In 1967 Strohmeier and Muller found that the carbonyl stretching frequencies in a variety of monosubstituted metal carbonyl complexes could be used to order phosphorus ligands in an electronic series.¹

Historically, the character of phosphine ligands was rationalized almost entirely on the basis of electronic effects until Tolman introduced the steric parameter θ .² The steric bulk of the phosphine is measured as the angle (θ) of the cone of space it requires when bound to a metal. Since the cone angle is determined from models, it provides a useful tool in predicting the coordination chemistry of phosphines. Tolman investigated the electronic component of phosphine coordination in a manner similar to Tolman, however, narrowed his study to mono-Strohmeier. substituted LNi(CO)3 complexes, thus eliminating possible artifacts due to changes in metal centers. Compilation of values of v_{CO} for numerous phosphines generated the electronic parameter χ , which is related to v_{CO} by the $equation:^2$

for $PX_1X_2X_3$ $v = 2056.1 + \Sigma\chi_i$

Here χ is an electronic factor related to each substituent on the phosphorus atom, and the compilation of χ values allows the prediction of v_{CO} . The stretching frequency, in turn, can be used as a measure of the overall basicity of the phosphine.

Today, it is readily recognized that the observed character of a phosphine is a combination of both electronic and steric effects which can be manipulated to yield the desired properties. Yet, while the electronic

and steric parameters are useful tools in predicting the nature of a phosphine, they fall short in two important respects. The coordinating ability of a phosphine is strongly dependent upon the nature of the remaining ligands and their geometry relative to the phosphine. Strong π acids such as CO trans to the phosphorus atom compete for filled metal d orbitals involved in backbonding and cause an increase in the M-P bond distance. Electronegative groups trans to phosphorus decrease the M-P bond distance by increasing the Lewis acidity of the metal through induction, and by weakly competing for filled metal d orbitals. The limit of strain that can be tolerated within the molecule must also be considered and is not an easily determined variable. The cone angle, θ , may predict the steric bulk of a phosphine, but in real complexes, the toleration of strain is a complex balance of bonding, steric and geometric parameters that must be considered for each individual molecule.

Ligand design has been done in a qualitative sense by synthetic chemists as efforts to develop a quantitative measure that includes all variables continue. Comprehensive quantitative treatments are difficult because of the flexibility of phosphines and the interdependence of the steric, g and π factors.

Giering et al.³ have developed a method (QALE:

qualitative analysis of ligand effects) for separating the steric, σ and π factors in phosphine bonded complexes. Tolman's cone angle, θ , was used as a measure of steric bulk and the pK_a values for the protonated phosphines were used as a measure of the basicity of the phosphorus lone pair. In previous work, they had observed deviations in the reduction potentials from those predicted by the pKa values. Complexes of electron withdrawing substituted phosphines, which were less basic, but involved π back bonding were more easily reduced than predicted. This deviation of the reduction potentials from those predicted was defined as $E\pi_a$, and was used as a measure for the extent of π back bonding of the phosphine. Correlation of heat of reaction data for the displacement of a weakly coordinated ligand with the phosphine of interest (e.g., equation 1) with θ , $pK_a,$ and $E_{\pi a}$ afforded an

$$MePt(PhMe_2P)_2(THF)^+ + L \longrightarrow MePt(PhMe_2P)_2(L)^+ + THF$$
(1)

analysis of the three paramters. The observed heat of reaction (Δ H) is composed of a σ electronic (Δ H σ), π electronic (Δ H π), and steric (Δ H θ) components, which are proportional to pK_a, E π_a , and θ , respectively. The results of this treatment included two distinct classes of

phosphines: σ donors (class I), and δ donors/ π acceptors (class II). Within these two classes thresholds were observed for the steric and the π contributions which are specific to the class of metal complexes being studied. the cone angle increases in class I phosphines, there is no change in the coordinating ability of the phosphine until the steric threshold for σ donation (θ_{σ}) is reached. After this point there is a sharp drop in ligating ability due to destabilization of the complex by the large cone angle (Figure 1). As the π acceptor character of the phosphine is increased, evidence of π electronic effects are not observed until the π threshold is reached ($\pi_{t})\,,$ after which the phosphines behave as class II ligands. As the cone angle is increased in class II phosphines, the increasing steric bulk of the complex causes a lengthening of the M-P bond distance until the steric threshold for π donation is reached (θ_{π}), after which the phosphine becomes a σ donor.

Back donation of filled metal d orbitals to phosphorus donor ligands has been a subject of controversy.⁴ Although it is generally accepted that π interactions between the phosphorus and metal occur in some complexes, the prevalence of back bonding in organometallic systems and the identity of the orbitals on phosphorus that are used has remained a subject for discussion. As we have seen, QALE can be used to identify π interactions in

increasing cone angle

Figure 1. Graphic representation of the steric, σ , and π thresholds determined from QALE. Beginning at A, with a Class I ligand, the π accepting ability increases until π_t is reached, when it becomes a Class II ligand. The cone angle increases until θ_{π} , after which the M-P distance is too long for π interaction and again becomes Class I. At θ_{σ} , the cone angle begins to destabilize the complex.

organometallic systems, and Ellis et al. have applied \textbf{X}_{α} calculations to identify the low lying orbitals that could be used in π back bonding.⁵ Previously, empty phosphorus d orbitals have been invoked in metal to phosphorus back π donation.⁶ In identifying the frontier orbitals of PF3, PH3 and PMe3, Ellis et al. have determined that the π overlap may involve p orbitals on phosphorus. The highest unoccupied orbital (HOMO) on phosphorus consists primarily of a lone pair s-p hybrid (Figure 2). The orbital energies follow the order PMe₃ (11% s) < PH₃ $(14\% s) < PF_3$ (29% s), which parallels the percent s character and is the expected trend based on electron withdrawing groups on phosphorus. The lowest unoccupied orbitals (LUMO) are shown in Figure 3 (same plot parameters as Figure 2) and have the correct symmetry for back donation along the principal axis. All three have similar symmetry, however there are several important differences. The energy of the PF3 (-1.05 ev) LUMO is lower than that in PH3 (0.88 ev) or PMe3 (0.85 ev) and should enhance the back-bonding to PF3 relative to PH3 or PMe3. Second, the nature of LUMO changes from 36% 3p and 23% 3d on phosphorus in PH3, 14% 3p and 10% 3d in PMe3, to 44% 3p and 23% 3d in PF3. More electronegative substituents on phosphorus in PX3 cause a more ionic P-X

Figure 2. Contour plots of the HOMO (lone pair) orbitals in a) PH3, b) PMe3, and c) PF3

Figure 3. Contour plots of the LUMO (π acceptor) orbitals in a) PH3, b) PMe3, and c) PF3

bond. Thus, the valence orbitals on X will dominate the occupied bonding orbitals and the antibonding levels will have more phosphorus 3p character.

Ab initio molecular orbital theory was used by Marynick to further investigate the π accepting orbitals on phosphorus.⁶ Wave function plots identified the 3p orbitals (LUMO) on PH₃ as having σ * local symmetry. To test the importance of the σ * orbitals in π back-bonding, ab initio calculations were done on the tetrahedral complex Ni(NH₃)₃(PH₃) with, and without the inclusion of 3d orbitals in the phosphorus basis set. There is very little difference in the Ni d orbital occupancy between the two (0.03 e in d_{XZ}, d_{YZ}; 0.02 e in d_{XY}, d(x²-y²)) with significant delocalization from the metal to phosphorus. While this is not a completely quantitative treatment, it indicates that d orbitals on phosphorus are not necessary for a qualitative explanation of back-bonding.

Numerous spectroscopic techniques have been used to study the nature of the phosphorus-metal bond.⁷⁻⁹ The use of ³¹P NMR is particularly attractive because it is readily accessible. Bartik and Himmler have reported a linear correlation between δ from the ³¹P NMR of <u>trans</u>-(PR₃)₂PdCl₂ complexes and the steric parameter theta of the free ligand.¹⁰ Plotting the chemical shift of 49 different phosphine complexes against theta gave a straight line with

a correlation coefficient of 0.936. This line excludes four very bulky phosphines: Cy_3P , <u>ortho-</u>, <u>meta-</u>, and (<u>para-</u> toly1)₃P which did not follow the correlation. An equation of the line allows an approximation of the cone angle from the ³¹P NMR data (equation 2).

$$\theta = 0.474 \ (\delta(^{31}P \ t - (PR_3)_2PdCl_2) + 122.1 \ (2)$$

The above considerations of phosphines can be extended to chelating polyphosphines, although no parameters currently exist that include the chelate effect. Upon coordination of an initial phosphorus atom, the carbon backbone holds subsequent phosphorus atoms in close proximity to the metal. The most widely used chelating phosphines are the series, $R_2P(CH_2)_nPR_2$. Investigations of metal phosphine complexes have shown a dramatic increase in reactivity, selectivity, and stability when diphosphines are employed.¹¹ This has generated studies into the effects of chelate ring size, the number of such rings and the spatial arrangement of the phosphorus atoms within the polydentate phosphine ligands.

The study of ${}^{31}P{}^{1}H$ chemical shifts as a function of chelate ring size was undertaken by Garrou.¹² He compared several metal complexes containing $Ph_2P(CH_2)_nPPh_2$ where n = 1, 2, or 3 with their <u>bis</u>-alkyldiphenylphosphine analogues.

By tabulating the difference in chemical shifts between analogous monodentate phosphine complexes and bidentate phosphine complexes, he found a significant deshielding effect for those containing five-membered chelate rings. The deshielding contribution ranged from -21 to -33 ppm in fifteen complexes of Cr, Mo and W. Although fewer suitable examples were available for n = 1, δ ranged from +12 to +25 ppm in three examples. Similarly, the case for n = 3 fell between +2 and +17 ppm in four examples.

Since three different metals were employed in the study, the effects due to a change in metal size were also studied.¹² Within the Group 6 metals, no correlation could be found between 31P NMR data and metal ion radius. However any generalization of this observation should be done cautiously since there is only a small change in metal radius within the group.⁴ The idea of a negligible effect due to metal radius is further supported by Hancock et al.^{13,14} In their study of the formation constants of metal tetra-azamacrocylic complexes (Figure 4a), there was no correlation between the formation constant and agreement between the metal diameter and ligand cavity size. Ligands predicted to have too large a cavity to coordinate favorably to a small metal ion such as Ni(II), and ligands predicted to have too small a cavity to coordinate the larger ion Pb(II) formed stable complexes with unexpectedly

Tetraaza macrocyclic ligands, a) non-rigid, ethylene bridged, b) rigid doubly ethylene bridged macrocycles Figure 4.

a.

......

large formation constants. The tetra-azamacrocycles are not rigid structures and the experimental results were rationalized by the fact that distortion in the planarity of the ligand could allow a more favorable interaction between the metal and nitrogen atoms. This hypothesis was investigated via the synthesis of more rigid analogues of the ligands (Figure 4b) and the formation constants of their complexes as a function of metal radius. The results indicate a slight dependence of the formation constants on the metal radius. These results, however, are complicated by new variables such as the ring conformation and folding that are generated by the double bridging ethylene.

The chelate studies of Garrou are nicely complemented by structural studies by Palenik et al.^{15,16} Crystallographic analyses were done for the series of Pd(II) complexes $(Ph_2P(CH_2)_nPPh_2)PdX_2$ where n = 1 (dppm), 2 (dppe), or 3 (dppp), and X - Cl⁻ or NCS⁻. This allowed the direct comparison of the metal-phosphorus bond lengths in a homologous series as a function of chelate ring size (Figure 5). The results indicate an increased metalphosphorus interaction for the dppe (n - 2) five-membered chelate ring.

The P-Pd-P bond angle increases from dppm to dppp as the bite of the chelate increases with the added methylene

.

Figure 5. Ortep diagrams for the series $Cl_2Pd(Ph_2P(CH_2)_nPh_2P)$: a) n = 1, dppm, b) n = 2, dppe, c) n = 3, dppp

.

......

groups between the phosphines (Table I). The P-Pd bond lengths are an absolute measure of the metal-phosphorus interaction. The Pd-P bond lengths for dppm, which provides a four-membered chelate ring, are complicated by inequivalency. The values are significantly different for dppm due to distortion in the molecule induced by the small bite of the chelate. The small Pd-P bond length for dppe (five-membered chelate ring) indicates a marginally stronger interaction between the Pd and P relative to the

			·
	n = 1	n = 2	n = 3
X = NC	s -		
P-Pd-P (°)	73.33(5)	85.2	89.32
X-Pd-X (°)	90.9	90.2	89.8
Pd-P (Å)	2.282(2) 2.264(2)	2.242(3) 2.258(3)	2.241(1) 2.248(1)
X - C1	-		
P-Pd-P (°)	72.68(3)	85.82(7)	90.58(5)
X-Pd-X (°)	93.63(3)	94.19(7)	90.78(5)
Pd-P (Å)	2.234(1) 2.250(1)	2.233(2) 2.226(2)	2.244(1) 2.249(2)

Table I. Average bond lengths and angles in $(Ph_2P(CH_2)_nPPh_2)PdX_2$

six-membered chelate ring compounds. This is rationalized as the result of a reduction in strain imposed on the complex by the ethylene backbone.

The successful utilization of chelating diphosphines has led to the natural extension of including higher polydentate phosphines, and a number of reviews have been published.¹⁷

As the number of phosphine complexes which have been analyzed by X-ray crystallography grows, the bond length and bond angle data provide clear information concerning ligand effects. Clark and Hampden-Smith studied deviations in Cy3P (Cy = cyclohexyl) complexes as a function of steric bulk of the complex.¹⁸ The extensive use of Cy_3P in organometallic chemistry has provided numerous crystallographic analyses from which to work, particularly for <u>cis</u> and <u>trans</u>- $[L_2PtZ_2]^{n+}$. Based on Tolman's cone $angle^2$, Pt(PPh₃)₄ and Pt(PCy₃)₃ should not exist because of the large cone angles of PPh₃ (145°) and PCy₃ (170°). However, these complexes are known and $\boldsymbol{\theta}$ describes the ligand size but does not describe how such ligands can be accomodated about the metal center. This study reveals that steric overcrowding is accommodated progressively by the following types of distortion: a) lengthening of the Pt-P bond, b) deviations from square geometry at the Pt atom (but retaining planarity), c) deviation of the Pt-P-C

angles in the phosphine ligand, d) deviation from planar geometry. This is nicely illustrated in the comparison of three the trans complexes: $H_2Pt(PCy_3)_2$ (A),¹⁹ $[HPt(PhCy_2P)_2(PCy_3)_2]^+$ (B),²⁰ and $(PhCl_2Si)Pt(PCy_3)_2$ (C).²⁰ In the hydride complex A, there is little evidence of crowding when compared to mono-substituted PCy₃ complexes, such as $Cl_2Pt(PCy_3)(PMe_3)$ in which there is assumed to be no steric crowding. In A the average Pt-P bond distance is 2.26(1) Å (Table II). In complex B, more steric crowding created by the replacement of an hydride with the larger phosphine is reflected in highly distorted P-Pt-P bond angles, and an increase in the Pt-P bond length (2.346(3) and 2.337(3)Å). This is accompanied by a decrease in the P-Pt-P bond angle to 167.8°.

 Table II. Bond distance and angles in PCy3 complexes of Pt(II)

 compound
 Pt-P distance (Å)
 P-Pt-P angles (°)

 H2Pt(PCy3)2 A
 2.26(1)
 180

 [HPt(PhCy2P)-
(PCy3)2]+ B
 2.346(3)
2.337(3)
 167.8

 (PhCl2Si)2Pt(PCy3)2 C
 2.350(1)
2.388(1)
 142.7

Displacement of the second hydride by a larger ligand further increases the Pt-P bond distance and decreases the P-Pt-P bond angle to 142.7°. The ligand substituents adopt a staggered conformation with respect to each other and the crowding distorts the Cy₃P ligand. In complex A, the Pt-P-C bond angles are between 109° and 111°. In complex C, these angles are between 123° and 125°.

COMPLEXES OF GROUP 10 METALS

The Group 10 metals are conveniently divided into Ni complexes, and Pd and Pt complexes. The covalent radii of divalent Pd and Pt are very similar (Pd:1.31 Å; Pt: 1.32 Å).²¹ A direct result of this similarity in radii is a close parallel in several of the types of organometallic compounds formed by Pd and Pt.²¹ Since the divalent ions of the Group 10 metals are d⁸, there is a strong tendency to form four-coordinate square planar complexes. Fivecoordinate complexes are also known, although most commonly for Ni. Both square pyramidal and trigonal bipyramidal geometries have been observed, although the majority of five-coordinate Group 10 metal complexes have a distorted geometry that is closer to square pyramidal.²²

The reaction of Ni(II) salts with monodentate phosphines yields four-coordinate complexes of the formula Ni(PR₃)₂X₂, where X = Cl⁻, Br⁻, I⁻, or CN⁻. The phosphine ligands in these compounds are sensitive to oxidation, in contrast to the analogous Pd and Pt complexes which are quite stable. Red-brown diamagnetic as well as blue to green paramagnetic complexes of this formula have been reported.²² The diamagnetic complexes are square planar, the paramagnetic are tetrahedral. The preference for these two forms has been studied as a function of solvent,²³ substituents on phosphorus,²⁴ and anion.²⁵

Isomerization between the two forms was found to occur more readily in polar solvents at elevated temperatures favoring the diamagnetic square planar isomer. The use of less polar solvents in the initial preparations favored formation of the tetrahedral product.²³ As the coordinating anion and substituents on phosphorus increased in steric bulk, the tetrahedral product was favored. For the series of phosphines n-Bu₃P, n-Bu₂PhP, and n-BuPh₂P, the complexes L₂NiX₂ yielded square planar products in the reaction of n-Bu3P or n-Bu2PhP with NiX2 salts. As the steric bulk of the ligand increases in n-BuPh₂P, the interligand repulsions increase and the tetrahedral form is favored.²⁴ This reduces some of the strain by removing the planarity of the four phosphines. The same trend is observed for the series of anions Cl⁻, Br⁻ and I⁻. Coordination of I increases the steric interactions, and the paramagnetic tetrahedral form is favored.²⁵ When a Ni(II) salt of a non-coordinating anion, such as ClO_4^- , is reacted with Me₃P, $[Ni(PMe_3)_4](X)_2$ is formed.²⁵ The red product is diamagnetic and has a square planar geometry.

The coordination number and geometry of the Ni(II) product is strongly dependent on the anion and can not be completely rationalized by steric considerations. Deep blue-black <u>tris</u>-phosphine complexes ([Ni(PMe₃)₃X]X) have been isolated from the reaction of NiX₂ salts with Me₃P, as

well as five-coordinate complexes $(Ni(PMe_3)_3X_2)$. The ligand PMe₃ is the only phosphine known to form fivecoordinate complexes containing halides.²⁶

Ni complexes containing CN^- readily form fivecoordinate species of the formula $[(CN)_{5-n}Ni(PMe_3)_n]^{-3+n}$ with a variety of phosphines. The ability of PMe_3 to form stable five-coordinate complexes more readily than other phosphines lies in a combination of its small cone angle and increased Lewis basicity. A crystallographic analysis of Ni(CN)_2(PhPMe_2)_3 showed it to have a distorted trigonal bipyramidal geometry very similar to that of Ni(CN)_5³⁻ (Figure 6).²⁷ The three phosphine ligands occupy the equatorial positions with bond angles between them of 117°, 127, and 116. The more electronegative CN^- groups occupy the axial sites with P-Ni-CN angles between 89 and 91, and a N-P angle of 177°.

Multidentate ligands can be used to favor or rigidly enforce desired geometries in metal complexes. The tripod ligands np3, nas3 and pp3 have been used to produce fivecoordinate trigonal bipyramidal complexes (Figure 7).²² Sacconi et al. reported the structural characterization of a Ni(II) complex of np3 in which the geometry about the Ni atom is distorted trigonal bipyramidal (Figure 8).²⁸ The phosphines are required to occupy the equatorial positions by the design of the ligand, and have P-Ni-P bond angles of

Figure 6. Ortep diagrams of (CN)2Ni(PhMe2P)3: a) complete molecule, b) View down the three-fold axis, c) Ortep diagram with the phenyl rings removed to show the trigonal pyramidal geometry

126°, 113°, and 117°. The nitrogen donor of the ligand and the acyl group occupy the axial positions with a N-Ni-C angle of 174° .

с.

Figure 7. Tripod ligands a) np3, b) nas3, and c) pp3.

Four-coordinate square planar and five-coordinate square pyramidal Ni(II) complexes of o-phenylenebis-(dimethylarsine) (diars), and the phosphorus analogue (diphos) have been reported.²⁹ Halide exchange was noted in the five-coordinate complexes during characterization

Figure 8. Ortep diagram of [Ni(np₃)(COCH₃)]⁺

and in order to study halide exchange, the monophenyl substituted diars and diphos ligands were prepared. The phenyl substitution gives rise to ligand diasteriomers which were separated prior to coordination to Ni(II) (Figure 9a). Upon coordination of two of these bidentate ligands, further stereochemistry is generated.

Of interest in this study is the yellow syn-[(Ni(RS-

bidentate)₂](PF_6)₂ in which all four methyl groups lie above the plane of the metal. In the presence of halide, the yellow compound turns a deeper yellow orange as the five-coordinate complex is formed. In the case of the syn isomer, a pair of chemically distinct adducts is possible in which the halide lies syn or anti to the methyl groups on the donor atom (Figure 9b). At room temperature (310 K), a single peak is observed in the 1 H NMR for the methyl resonances due to rapid exchange of the halide. The spectrum is temperature dependent and at 213 K, two signals of equal intensity are observed for the two halide adducts. ¹H NMR spectra of mixtures of the [Ni(bidentate)₂]²⁺ isomers gave distinct signals for each of the isomers, thereby excluding the possibility of redistribution of the ligands to account for the experimentally observed phenomenon.

The best known examples of phosphine complexes of palladium and platinum in the +2 oxidation state are of the formula $X_2M(PR_3)_2$. They are readily prepared by the reaction of metal salts or LMX₂ (X - PhCN, COD, SMe₂) with the appropriate phosphine and are air- stable, diamagnetic, pale yellow to cream colored solids.²¹

The effect on the metal-phosphine bond of changing the chelate ring size in the series of compounds $Cl_2Pd(Ph_2P(CH_2)_nPPh_2)$ has been discussed for n = 1 to

Figure 9. Possible stereochemistry of a) the ligand: RR, SS, and RS, b) of four-coordinate [Ni(bidentate)₂]²⁺, and c) Possible orientations of the halide in <u>syn</u>-[NiX(bidentate)₂]⁺

Me

3.^{15,16} An extension of this work was to determine the limiting value for n which would still allow <u>cis</u> coordination of the diphosphine. As already noted, the methylene bridged diphosphine, n = 1 (dppm), was determined not to be well suited to the series because of its small bite. The formation of a four-membered chelate ring induces a large amount of ring strain and has been found to be better suited to spanning two metals and the ligand dppm has proven very useful in this regard.³⁰

In addition to $X_2Pd(dppm)$, another mode of coordination has been recently reported by Puddephatt and coworkers for the coordination of dppm to Pd(II) and Pt(II).³¹ Reaction of (PhCN)₂PdCl₂ or (Me₂S)₂PtCl₂ with dppm produced dinuclear compounds in which the dppm serves as a bridging ligand. In Scheme 1, the reaction sequence is given for Pd(II). An analogous series has been obtained for Pt(II). A molar ratio of one to one yielded the bridging phosphine dimer, while reactions with a molar ratio of three dppm to two M(II) produced a dinuclear product of the same ratio in which three dppm ligands are bridging. The proposed structure is based on supporting evidence in the ³¹P(¹H) spectrum, which shows an equivalence of all phosphines, conductance measurements

Scheme 1. Reactions of M(II) with dppm, the phenyl groups on phosphorus are not shown

consistent with a two to one electrolyte, and the removal of two chlorides by exchange.

As n is increased to 4, the chelate ring becomes too large for the ligand to coordinate <u>cis</u> to a single metal, yet it is not sufficiently expanded to allow <u>trans</u> coordination. The result is that stable phosphine bridged complexes are formed. In reactions with Pd(II) and Pt(II) this ligand has been shown to form trinuclear <u>cis</u> complexes, $\{Cl_2M(Ph_2P(CH_2)_4Ph_2P\}_3$, based on solution molecular weight determinations and infrared spectral data.³²

The chelating diphosphine with the largest chelate ring that has been reported to coordinate <u>cis</u> to Pd(II) or Pt(II) is bis(diphenylphosphino)-3,6-dioxaoctane (dpo) which has 8 atoms between the two phosphorus atoms.³³ Both <u>cis</u>-PdCl₂(dpo) and <u>trans</u>-MI₂(dpo) (M - Ni, Pd) have been structurally characterized (Figure 10). The ³¹P(¹H) NMR spectra show a single peak, with the exception of the Pt complexes, in which there is coupling between P and Pt. The change in chemical shift from <u>cis</u> to <u>trans</u> is approximately +3 ppm, which agrees with that observed for the analogous n-Bu₃P complexes which showed a change in shift of +2.6 ppm.

Both complexes are square planar, with a small deviation from planarity in the <u>trans</u> complex. The angles and distances around the Pd atoms are given in Table III.

The bond distances compare favorably with similar compounds, demonstrating the ability of metal complexes to overcome steric strain through balancing their geometric and electronic variables. The P-Pd-P angle is significantly larger than the ideal 90 ° and this is ascribed to the large chelate ring of ligand.

	<u>cis</u> -PdCl ₂ (dpo)	<u>trans</u> -PdI ₂ (dpo)
P-Pd-P (°)	105.4(1)	164.9(1)
X - Pd - X	88.1(1)	146.8(1)
P - P d - X	82.5(1)	87.9(1)
P - P d - X	84.0(1)	89.1(1)
P-Pd (Å)	2.268(1) 2.263(1)	2.330(2) 2.321(2)

Table III. Bond angles and distances for X2M(dpo).

Two pairs of the phenyl rings (A,B; C,D) lie almost parallel in the solid state structure of cis-PdCl₂(dpo). The angle between phenyls A and B is 17° and is 19° between C and D. The distances between the phenyl rings in each pair lie between 3.26 and 3.90 Å. The authors suggest a corresponding lengthening of the C-C bond lengths within these phenyl rings, with average distances of 1.368(3) Å compared to 1.377(3) Å in phenyl rings that lie approximately perpendicular to one another. These observations may indicate an interaction between the pi systems, although, the phenyl C-C bond distances lie within three standard deviations of one another and may be due to experimental error.

Halides are readily displaced from X2Pt(dppe) by an additional chelating diphosphine but require the addition

Figure 10. Ortep diagrams of: a) <u>cis</u>-(dpo)PdCl₂, b) <u>trans</u> -(dpo)PdI₂

.

of AgBF4 to remove the halides in PdX2(dppe).³⁴⁻³⁸ When the halides are replaced by monophosphines, a silver salt is required to remove the second halide from Pt also. These methods have been used to prepare an additional series of Pt(II) and Pd(II) compounds in which three and four phosphine ligands are coordinated to the metal (Scheme 2).

Scheme 2. Ligand substitution chemistry of $X_2M(dppe)$, where M = Pt, Pd, $X = Cl^-$, Br⁻

Figure 11. Ortep diagram of [Pd(pMepe)2]Cl2

The bis-bidentate complexes, $[M(dppe)_2]X_2$, have been structurally characterized for M = Pd and Pt, as well as for the methyl substituted ligand bis-(phenylmethylphosphino)ethane (pMepe) (Figures 11 and 12).^{36,38} The <u>trans</u> effect of replacing chlorine by phosphorus <u>trans</u> to the phosphine, is quite pronounced, causing a lengthening of the M-P bond. The Pd-P bond lengths in $Gl_2Pd(dppe)$ are 2.233(2) and 2.226(2) Å, while in $[Pd(dppe)_2]Cl_2$ the bond lengths are 2.342(2), 2.332(2), 2.347(2), and 2.335(2) Å. The bond angles around Pd in $[Pd(dppe)_2]Cl_2$ are 81.65(8)°,

Figure 12. Ortep diagram of [Pt(dppe)2]Cl2

82.04(7)°, 98.35(8)°, and 97.96(7)°. In Cl₂Pd(dppe) the P-Pd-P angle is 85.82(7)°, the Cl-Pd-Cl angle 94.19(7)°, and the P-Pd-Cl angles are 99.78(3)° and 94.39(3)°. The difference in angles around the Pd atoms can be attributed to the difference in steric requirements. There is also a conformational change between the bis-diphos and mono-diphos compounds in the ethylene bridge of the ligand. In [Pd(dppe)₂]Cl₂, both carbon atoms of each ethylene bridge lie on the same side of the MP4 plane, whereas in $Cl_2Pd(dppe)$ one of the carbon atoms lie above and the other below the MP₄ plane.

Stable five-coordinate complexes of Pt(II) and Pd(II) were virtually unknown before the late 1960s. Prior to that time, only three such compounds were identified. In 1964, Collier and coworkers reported the initial work on

Figure 13. Ortep diagram of [(PMe₃)₃PdBr₂]

the structural characterization of compounds of the formula (R₃P)₃PdBr₂ in which the Pd atom is five-coordinate.³⁷ The geometry around the Pd is a distorted square pyramid with one Br⁻ lying well below the plane of the Pd and three P atoms (Figure 13). Cramer et al. reported a five-coordinate Pt(II) complex in 1965 in which five trichlorotin groups are bound to Pt.³⁹ It was proposed to have trigonal bipyramidal geometry (tbp) by comparison of

spectral data with $(Pt(CN)_5)^{3}$ which is known to have the geometry.

Although not structurally characterized, $[Pt(dppm)_2](PF_6)_2$ was investigated by Grossel et al.^{35a} They observed an equilibrium between the four-coordinate starting complex and a five-coordinate form in the presence of halide in which a halide is bound to the Pt. The fivecoordinate complexes, [XPt(dppm)₂]X, were identified as being the major species in solutions of the previously reported $[Pt(dppm)_2]X_2$ four-coordinate complexes. $31P\{1_H\}$, 1 H, and 195 Pt NMR and conductance measurements were used to verify five coordination. A small (2 ppm) upfield shift in the ^{31}P NMR chemical shift of the dication in CH₃CN, versus that in CH₂Cl₂ was observed, suggesting the coordination of CH₃CN in solution. The coupling ${}^{\rm L}J_{\rm Pt-P}$ ranged from 2000 to 2190 Hz, indicative of transphosphines. Upon coordination of the halide to the fifth coordination site, a downfield shift of 7 ppm was observed for $X = Cl^-$, and upfield shifts of 10 and 20 ppm for X =Br and I, respectively. The Pt-P coupling constants exhibit a small change (30 to 100 Hz), remaining in the range expected for P trans to P. The significant changes in chemical shift show that the species in solution cannot be the four-coordinate Pt complex and the variation in the shift illustrates the dependence on the coordinated halide.

Reaction of $Cl_2Pd(PhMe_2P)_2$ with I⁻ has been reported to produce two polymorphic crystalline products of the formula I₂Pd(dppe).⁴⁰ One polymorph crystallizes as deep red needles, the second as yellow plates. The red form converts to the yellow upon heating to 120°, then melts to an orange liquid at 160°. Both have been structurally characterized (Figure 14). The red form is fivecoordinate in the solid state with bridging I⁻. In addition, one <u>ortho</u>-H of the phenyl ring on each P is bent over the Pd atom. The yellow form is formally fourcoordinate, but there is interaction between Pd and the <u>ortho</u>-H of one phenyl ring from each of the two P atoms to give an elongated octahedron.

In the red isomer, the equatorial non-bridging I⁻ lies 2.638(3) Å from the Pd. The bridging I-Pd bond distances are 2.619(3) Å for the equatorial Pd-I bond and 3.290(3) Å for the axial bond. One <u>ortho</u> H of each of the Me₂PPh units are 2.84 and 2.85 Å from the Pd. The average Pd-I bond length in the yellow form is 2.592(3) Å. The average Pd-H distance is 2.333(7) Å, which is significantly shorter than that found in the red isomer.

The hydrogen atoms were not located in the structure determination, but were derived assuming normal phenyl geometry. The Pd-H distances are sufficiently long that direct interactions are questionable, and their proximity

a.

Figure 14. Ortep diagrams of I2Pd(PhMe2P)2, a) red isomer, b) yellow isomer

.

may be a function of steric requirements. 40

Macrocyclic phosphine ligands have been used to form five-coordinate Pd complexes of the general form PdP₄X. Stelzer and coworkers used Pd(II) and Ni(II) in the template synthesis of a cyclam-like tetraphosphine.⁴¹ Four-coordinate and five-coordinate complexes were isolated depending on the isomeric structure of the ligand (Figure 15). In the process of a template synthesis of the ligand, two isomers are formed in which the substituents on the macrocycle are either <u>trans. trans</u> (A) or <u>cis. cis</u> (B). When <u>cis. cis</u> is formed, the chloride anion coordinates to the Pd to form the five-coordinate complex. The Pd-P bond distances are comparable between the two structures, 2.274(1) and 2.278(1) Å in the <u>trans. trans</u>, and 2.290(3) and 2.282(3) Å in the <u>cis. cis</u>. The Pd-Cl bond distance in <u>cis. cis</u> is 2.831(3) Å.

The difference in coordination geometry between the <u>trans, trans</u> and <u>cis. cis</u> complexes is rationalized by distortion within the <u>cis, cis</u> complex caused by the steric requirements of the ligand. The Pd atom in this isomer lies 0.26 Å out of the basal plane formed by the four P atoms, and it may be this deviation from planarity that activates the fifth coordination site forming the five-coordinate complex of ligand **B**.

b.

Figure 15. Ortep diagrams of the two isomers of Pd(macrocycle)Cl₂ a) [Pd(A)]Cl₂ and b) [Pd(B)]Cl₂

STATEMENT OF RESEARCH PROJECT

Ligand design is acquiring an entirely new outlook in the field of organometallic chemistry. It encompasses a variety of applications from asymmetric organic reactions mediated by organometallic complexes to solid supported phosphines as ligands which can be used an alternative to homogeneous catalysis.

The goal of this research was to synthesize a new tetradentate phosphine based on the skeletal structure of 1,1,2,2-(tetrahydroxymethyl)ethane (Figure 16a) and to investigate its coordination chemistry. The carbon skeleton of the ligand, 1,1,2,2-(tetra(diphenylphosphinomethyl)ethane (1), places strict geometric and steric restraints on metal complexes.

When coordinated to a single metal as shown in Figure 16b-e, two important features of the ligand emerge. First, although there is some degree of freedom in the carbon skeleton of 1, it is not possible for a metal to achieve true tetrahedral geometry in a monomeric complex of the type M(1). When an additional monodentate ligand is added, a true trigonal bipyramidal geometry is also forbidden. Second, the carbon backbone of the ligand sterically inhibits formation of an octahedral complex. Goordination of 1 to transition metal ions must therefore lead to the formation of four and five-coordinate complexes that are

.

Figure 16. Ligand 1 (a), and possible coordination geometries for M(1) complexes: b) square planar, c) square pyramidal, d) trigonal prismatic, and) distorted octahedral square planar or square pyramidal, respectively (Figure 16, b & c).

Metal ions that typically form six-coordinate octahedra may be forced to be coordinatively unsaturated or achieve six-coordination through trigonal prismatic geometry as shown in Figure 16d. Molecular models show that the phenyl rings are oriented towards the edges of the square plane formed by the four P atoms and away from the corners. This also allows six-coordination by forming a highly distorted octahedron in which two monodentate ligands lie above the P atoms and eclipse diagonal M-P bonds as shown in Figure 16e.

Coordinative unsaturation has been proven to be an important factor in transition metal catalyzed reactions, the initial step of mechanisms often being the dissociation of a ligand to form the active site. It may be argued that a coordinatively unsaturated metal complex of ligand 1 may also inhibit catalyzed reactions by its steric restraints. However the activity of metal complexes is a function of a complicated mixture of both electronic and steric factors, and the reactivity of M(1) type compounds may be significant. If the activity is indeed inhibited by the steric bulk of 1, model complexes using ligand 1 may be used to parallel more reactive complexes whose catalysis is

not always readily observed because of fast reaction rates and short-lived intermediates.

Coordination of ligand 1 to metal ions which assume tetradedral, trigonal bipyramidal, or octahedral geometries in complexes of mono-dentate ligands could lead to a highly distorted geometry about the metal, or geometries that are unusual for that metal ion. Investigation of the spectral, physical, and chemical properties of these compounds would provide information concerning bonding and relative stabilities of the geometric conformations.

Group 10 metal ions were initially chosen to investigate the coordination chemistry of 1 because they are well known to form four-coordinate square planar and five-coordinate square pyramidal complexes.⁵ Fourcoordinate Ni(II), Pd(II), and Pt(II) complexes of 1 and five-coordinate complexes of Pd(II) have been prepared. Within this group of compounds, three modes of coordination of ligand 1 have been observed in which: all four phosphorus atoms are coordinated to a single metal; the ligand bridges two metal centers; and two phosphorus atoms are coordinated and two are uncoordinated.

REFERENCES

1.	Strohmeier, W.; Muller, F. J. <u>Chem, Ber.</u> 1967, <u>100</u> , 2812.
2.	a. Tolman, C. A. <u>J. Am, Chem. Soc.</u> 1970, <u>92</u> , 2953. b. Tolman, C. A. <u>J. Am. Chem. Soc.</u> 1970, <u>92</u> , 2956. c. Tolman, C. A. <u>Chem. Rev.</u> 1977, <u>77</u> , 315.
3.	a. Giering, W. P.; Golovin, M. N.; Rahman, M. M.; Belmonte, J. E. <u>Organometallics</u> 1985, <u>4</u> , 1981. b. Giering, W. P.; Prock, A.; Rahman, M. M.; Liu, H. Y. <u>Organometallics</u> 1987, <u>6</u> , 650.
4.	Cotton, F. A.; Wilkinson, G. "Advanced Inorganic Chemistry" J. Wiley & Sons: New York, 1980, p 87.
5.	Ellis, D. E.; Trogler, W. C.; Xiao, S. X.; Berkovitch- Yellin, Z <u>J. Am. Chem. Soc.</u> 1983, <u>105</u> , 7033.
6.	Marynick, D. S. <u>J. Am. Chem. Soc.</u> 1984, <u>106</u> , 4064.
7.	a. Bodner, G. M.; Gagnon, C.; Whittern, D. N. <u>J.</u> <u>Organomet. Chem.</u> 1983, <u>243</u> , 305. b. Bodner, G. M.; McKinney, L. E. <u>Inorg. Chem.</u> 1980, <u>19</u> , 1951. c. Bodner, G. M. <u>Inorg. Chem.</u> 1975, <u>14</u> , 2694.
8.	 a. Bartik, T.; Himmler, T.; Schulte, H. G.; Seevogel, K. <u>J. Organometal. Chem.</u> 1984, <u>272</u>, 29. b. Goel, R. G.; Henry, W. P.; Srivastava, R. C. <u>Inorg. Chem.</u> 1981, <u>20</u>, 1727. c. Gray, G. M.; Kraihanzel, C. S. <u>J. Organometal.</u> <u>Chem.</u> 1983, <u>241</u>, 201.
9.	a. Johnson, B. V.; Steinmetz, A. L.; Ouseph, P. J. <u>J.</u> <u>Coord. Chem.</u> 1985, <u>14</u> , 103. b. Bursten, B. E.; Darenbourg, D. J.; Kellog, G. E.; Lichtenberger, D. L. <u>Inorg. Chem.</u> 1984, <u>23</u> , 4361.
10.	Bartik, T.; Himmler, T. <u>J. Organometal. Chem.</u> 1985, <u>293</u> , 343.
11.	Pignolet, L. H., ed. "Homogeneous Catalysis with Metal Phosphine Complexes" Plenum Press: New York 1983.
12.	Garrou, P. E. <u>Inorg. Chem.</u> 1975, <u>14</u> , 1435.
13.	Hancock, R. D.; Evers, A.; Ngwenya, M. P.; Wade, P. W. J. Chem. Soc., Chem. Commun. 1987, 1129.

• • • • • • • •

....

- 14. a. Hancock, R. D.; Thom, V. J. <u>J. Chem. Soc.</u>, <u>Dalton</u> <u>Trans.</u> 1985, 1877. b. Hancock, R. D.; Hosken, G. D.; Thom, V. J. <u>J. Am.</u> <u>Chem Soc.</u> 1980, <u>102</u>, 6551.
- Palenik, G. J.; Mathew, M.; Steffan, W. L.; Beran, G. J. Chem. Soc. Sect. A. 1970, 1059.
- Palenik, G. J.; Steffen, W. L. <u>Inorg. Chem.</u> 1976, <u>15</u>, 2432.
- 17. a. Meek, D. W. in "Homogeneous Catalysis with Metal Phosphine Complexes" Pignolet, L. H., ed. Plenum Press: New York, 1983, Ch.8. b. Alyea, E.C.; Meek, D. W. "Catalytic Aspects of Metal Phosphine Complexes" American Chemical Society: Washington, D.C. 1982. c. Meek, D. W. <u>Angew. Chem., Internatl. Ed., Eng.</u> 1978, <u>17</u>, 428.
- 18. Clark, J. C.; Hampden-Smith, M. J. <u>Coord. Chem. Rev.</u> 1987, <u>79</u>, 229.
- 19. Immurzi, A.; Musco, A. Carturan, g.; Belluco, U. <u>Inorg. Chim. Acta.</u> 1975, <u>12</u>, 1834.
- 20. Clark, H. C.; Dymarski, M. J.; Oliver, J. D. <u>J. Organomet. Chem.</u> 1978, <u>154</u>, c40.
- Hartley, F. R. "The Chemistry of Palladium and Platinum" Applied Science: New York 1973.
- 22. McAuliffe, C. A., ed. "Transition Metal Compounds of Phosphorus, Arsenic, and Antimony Ligands" Macmillan Press:New York, 1973.
- 23. Garton, G.; Henn, D. E.; Powell, H. M.; Venanzi, L. M. <u>J. Chem. Soc.</u> 1963, 3625.
- 24. Hayter, R. G.; Humiec, F. S. <u>Inorg. Chem.</u> 1965, <u>4</u>, 1703.
- 25. Hayter, R. G.; Humiec, F. S. <u>J. Am. Chem. Soc.</u> 1962, <u>84</u>, 2004.
- 26. Jensen, K. A,; Dahl, O. <u>Acta. Chem. Scan.</u> 1968, <u>22</u>, 1044.
- 27. Stalick, J. K,; Ibers, J. A. <u>Inorg. Chem.</u> 1969, <u>8</u>,

-

.

.

1090.

and a second second

- 28. Sacconi, L.; Stoppioni, P.; Dapporto, P. <u>Inorg. Chem.</u> 1978, <u>17</u>, 718.
- 39. Roberts, N. K.; Wild, S. B. <u>Inorg. Chem.</u> 1981, <u>20</u>, 1892.
- 30. Puddephatt, R. J. <u>J. Chem. Soc. Rev.</u> 1983, <u>12</u>, 99.
- 31. Radecka-Paryzek, W.; McLennan, A. J.; Puddephatt, R. J. <u>Inorg. Chem.</u> 1986, <u>25</u>, 3097.
- 32. Sanger, A. R. J. Chem. Soc., Dalton Trans. 1977, 1971.
- 33. a. Hill, E. W.; Taylor, J. G.; Falshaw, C. P.; King, T. J.; Beagley, B.; Tonge, D. M.; Pritchard, R. B.;
 b. McAuliffe, C. A. <u>J. Chem. Soc.</u> Dalton Trans. 1986, 2289. c. Dapporto, P.; Sacconi, L. <u>J. Chem. Soc. SectA</u> 1971, 1914.
- 34. a. Hartley, R. R.; Davies, J. A.; Murray, S. G. <u>J. Chem. Soc.</u>, Dalton Trans. 1980, 2246. b. Hartley, R. R.; Davies, J. A.; Murray, S. G. <u>J. Chem. Soc.</u>, Dalton Trans. 1979, 1705.
- 35. a. Grossel, M. C.; Moulding, R. P.; Seddon, K. R.; Walker, F. J. <u>J. Chem. Soc.</u>, <u>Dalton Trans.</u> 1987, 705. b. Anderson, G. K.; Lumetta, G. J. <u>Inorg. Chem.</u> 1987, <u>26</u>, 1518.
- 36. Groth, P. Acta Chem. Scand. 1970, 24, 2785.
- 37. a. Collier, J. W.; Frederick, J. M.; Watson, D. G.; Watson, H. R. <u>J. Chem. Soc.</u> 1964, 1803.
 b. Favez, R.; Roulet, R.; Pinkerton, A. A.; Schwarzenbach, D. <u>Inorg. Chem.</u> 1980, <u>19</u>, 1356.
- 38. Engelhardt, L. M.; Patrick, J. M.; Raston, C. L.; Twiss, P.; White, A. H. <u>Aust. J. Chem.</u> 1984, <u>37</u>, 2193.

• • • • • • • •

39. Cramer, R. D.; Lindsey, R. V. Jr.; Prewitt, C. T.; Stolberg, U. G. <u>J. Am. Chem. Soc.</u> 1965, <u>87</u>, 658.

- 40. Bailey, N. A.; Mason, R. <u>J. Chem. Soc. Sect. A.</u> 1968, 2594.
- 41. Stelzer, O.; Bartsch, R.; Heitkamp, S.; Morton, S.; Peters, H. <u>Inorg. Chem.</u> 1983, <u>22</u>, 3624.

.

.

.

.

SECTION I. PALLADIUM(II) AND NICKEL(II) COMPLEXES OF A PHOSPHINE POCKET LIGAND

.

INTRODUCTION

In attempts to control the character of coordinated transition metal ions, organometallic chemists have increasingly turned to ligand design. Subtle changes in the basicity, geometry and steric requirements of a ligand can have profound effects on the behavior of the metal.¹ The use of phosphines has proven especially useful in this regard and a tremendous number and variety of phosphine ligands have been reported.²

Multidentate phosphines have the additional factor of the chelation effect and variations of the "bite" and the physical arrangement of the donor atoms have been used to impose desired geometries around the coordinated metal center.

Figure 1. Utilization of a tripod ligand to favor trigonal bipyramidal geometry in [Ni(np₃)(OCOCH₃)]⁺

Well known examples of this property include the tripod ligands which have been used to favor five-coordinate trigonal bipyramidal complexes, such as [Ni(Np3)(OCOCH3)][BF4] (Figure 1)³ and tetraphosphine analogues of cyclam which have been used to form square planar, square pyramidal and octahedral complexes (Figure 2).⁴

Figure 2. Tetraphosphine macrocylic complex of Pd(II)

We report here a new chelating tetraphosphine (1) (Figure 3) that is unique in its steric and geometric constraints. Four-coordinate complexes are required by the geometry of the ligand to be square planar. Fivecoordinate complexes must be square pyramidal, and six coordination can only be achieved through trigonal prismatic or distorted octahedral geometry.

Figure 3. Ligand 1

Group 10 metal ions were chosen to investigate the coordination chemistry of 1 because they are well known to form four-coordinate square planar and five-coordinate square pyramidal complexes.⁵ Four and five-coordinate Pd(II) complexes involving two modes of coordination of ligand 1 and a four-coordinate complex of Ni(II) will be presented.

EXPERIMENTAL

General Procedures

All reactions were carried out under an inert atmosphere using solvents that were distilled from an appropriate drying agent under N₂ or Ar prior to use. Reagents were used without further purification unless otherwise noted.

Solution ³¹P NMR spectra were taken on a Bruker WM-300, or a Bruker WM-200 spectrometer operating in the Fourier mode. Chemical shifts were referenced to an external 85% H₃PO₄ standard. Positive values are downfield of the standard. Solution ¹H and ¹³C NMR spectra were taken on a Nicolet NT-300 spectrometer operating in the Fourier mode. Both were referenced to internal TMS.

Mid-infrared (4000 to 400 cm⁻¹) and far-infrared (600 to 150 cm⁻¹) spectra were taken on an IBM Fourier IR/98 spectrometer. Mid-IR range samples were prepared as KBr pellets or Nujol mulls on KBr plates; far-IR range samples were prepared as Nujol mulls on polyethylene plates.

Conductance measurements were made with a Markson ElectroMark Analyzer on solutions that were approximately 10⁻³ molar. Elemental analyses were carried out by Schwarzkopf Analytical Laboratory.

Preparation of 2,3-di(hydroxymethyl)-1,4-butanediol (2)

The title tetraalcohol was prepared by a modified version of a synthesis previously reported.⁶ A 2 L three neck r.b. flask fitted with a reflux condenser, addition funnel and N_2 inlet was charged with 800 mL THF and 45.0 g (0.919 mol) LiAlH_{Δ}. The flask was cooled in an ice bath and 88.6 g (0.280 mol) 1,1,2,2-tetracarboxylato-ethanetetraethyl ester⁶ dissolved in 200 mL THF was added over 1.5 h. The reaction mixture was allowed to warm to room temperature followed by heating at reflux overnight. After cooling to room temperature and then to 0° in an ice bath, the mixture was quenched by very slow addition of 90 mL H_{20} mixed with 200 mL THF. The mixture was stirred for 2 h and refluxed for 1 h. The solid residue was separated by filtration and then extracted with the filtrate in a Soxhlet extractor for three days. The low solubility of the tetraalcohol necessitates extraction to maximize the yield. Evaporation of the solvent and recrystallization from dioxane yielded 18.7 g (45% yield) of 2. (m.p. 111-112°; lit. 110°) (¹H NMR (d₆-DMSO): δ 4.48 (5H, t, OH plus presumed trace H₂O), 3.44 (8H, overlying ABX quartets, CH₂), 1.65 (2H, apparent pentet, CH)

Preparation of 2,3-dichloromethyl)-1,4-dichlorobutane (3)

The title tetrachloride was prepared as previously reported.⁶ (m.p. 53-54 °; lit. 52-53 °) (¹H NMR (CDCl₃): δ 3.90 (4H, A part of ABX system, ²J_{AB} = 11.5 Hz, ²J_{AX} = 2.8, CH₂), 3.73 (4H, B part of ABX system, J_{BX} = 6.0, CH₂), 2.29 (2H, m, X part of ABX, CH))

Preparation of 2,3-bis(diphenylphosphinomethyl)

1,4-bis(diphenylphosphino)butane (1)

Ph₂PH was prepared according to the procedure of Bianco and Doronzo.⁷ Ph₂PK was generated <u>in situ</u> from 9.0 mL (52 mmol) HPPh₂ and 2.02 g (52 mmol) K in 100 mL THF. The reaction was complete after 3 h yielding a red orange solution. This was filtered into a r.b. flask (equipped with reflux condenser and addition funnel) to remove excess The phosphide solution was cooled to 0° and 2.65 g Κ. (11.9 mmol) of 3 in 50 mL THF was added over 1.5 h. The reaction was allowed to warm to room temperature upon completion of the addition, and then refluxed for 3 h. The excess phosphide was converted to Ph₂PH by addition of H₂O at 0° until the red color of KPPh₂ faded. Once isolated, 1 is stable to oxidation in air, but it is highly susceptible to oxidation in the presence of HPPh₂ and H(0)PPh₂. For this reason, the entire procedure is done with careful exclusion of air in a glove bag or under an Ar blanket.

The reaction mixture was filtered through Celite to remove KCl and then the volume was reduced by half under reduced pressure. Methanol was added to initiate precipitation and the mixture refridgerated overnight. The white product was filtered and recrystallized from $3:1 (v/v) \text{ MeOH/C_6H_6}$. White needles (6.16 g, 63% yield) were filtered, washed with methanol and dried <u>in vacuo</u>.

Further purification was achieved by flash chromatographic separation using Kieselgel 60 silica and benzene.⁸ (m.p. 91-93°) (HRMS: m/e 821.817 (calculated m/e 821.769)) (elemental analysis ($C_{54}H_{50}P_{4} \cdot 1/2 C_{6}H_{6}$): 79.56% C, 6.31% H, 13.58% P (calc.: 79.62% C, 6.68% H, 13.69% P)) (¹H NMR (CDCl₃): δ 7 - 7.5 (40H, m, Ph), 2.28 (4H, A part of an ABX system, ²J_{H-H} = 12.37 Hz, ³J_{H-H} = 5.80 Hz, CH₂), 2.05 (6H, m, CH₂, CH) (¹³C NMR (CDCl₃): δ 138.8 (d, ¹J_{CP} = 12.7 Hz, Ph-ipso), 133.0 (d of d J_{CP} = 8.8, 8.6 Hz, Phortho, meta), 128.2 (d, ³J_{CP} = 6.7 Hz, Ph-para), 35.92 (triplet of triplets, ²J_{P-C} = 11.91 Hz, ³J_{P-C} = 7.95 Hz, CH), 32.72 (multiplet, CH₂))

Preparation of $[CH(CH_2P(0)Ph_2)_2]_2$ (4)

The ligand 1 was easily oxidized by DMSO. Strong heating $(100-130^{\circ})$ of 1 (0.321 g, 0.391 mmol) in DMSO in the presence of a catalytic amount of water for 24 h or sonication of the solution for 16 h quantitatively yields 4. Sonication was carried out by immersion of the reaction flask into a Branson 50-60 Hz ultrasonic cleaning bath. The solvent and side product Me₂S were removed <u>in vacuo</u>, and the product recrystallized from CH₃CN to give 0.331 g (96% yield). (m.p. 148 - 150°) (¹H NMR (CDCl₃): δ 7.76 (8H, A part of an ABX system, ³J_{P-H} = 29.85 Hz, ³J_{H-H} = 7.49 Hz, Ph-<u>ortho</u>), 7.62 (8H, A' part of an A'BX system, ³J_{P-H} = 29.72 Hz, ³J_{H-H} = 7.62 Hz, Ph-<u>ortho</u>"), 7.30-7.45 (24H, multiplet, Ph-m, p), 2.95 (4H, multiplet, CH₂), 2.63 (6H, multiplet, CH₂, CH)), (¹³C NMR (CDCl₃): δ 131.40 (s, Ph-ipso), 130.71 (d, ²J_{P-C} = 6.31 Hz, Ph-ortho), 130.71 (d, ³J_{P-C} = 8.28 Hz, Ph-meta), 128.56 (d, ⁴J_{P-C} = 11.74 Hz, Phpara), 35.63 (multiplet, CH₂), 29.67 (multiplet, CH))

Preparation of $PdCl_2)_2(1)$ (5)

Separate solutions of 0.219 g (0.570 mmol) $(PhCN)_2$ -PdCl₂ and 0.235 g (0.290 mmol) of 1 in 20 mL benzene each were added to 50 mL stirred benzene over 0.5 h at room temperature with the aid of syringes and a syringe drive. The reaction was complete within 5 h, with precipitation of the pale yellow product. Filtration yielded 0.575 g of 5 (86% based on Pd) which was highly insoluble, dissolving only in DMSO. The complex was not purified before use in the next preparation. Recrystallization can be achieved by slow evaporation of a DMSO solution of 5 in air. (¹H NMR

(DMSO-d₆): δ 7.7 (16H, A part of ABX system, ${}^{3}J_{P-H} = 2.00$ Hz, ${}^{3}J_{H-H} = 2.75$ Hz, Ph-ortho), 7.50 (8H, m, Ph-meta), 7.34 (4H, m, Ph-para), 2.18 (4H, m, CH₂), 2.09 (2H, m, CH), 1.14 (4H, m, CH₂)

Preparation of $[(DMSO)Pd(1)]Cl_2$ (6)

Further reaction of 5 (0.575 g, 0.490 mmol) with an equivalent of 1 (0.403 g, 0.490 mmol), in 100 mL DMSO produces the mononuclear complex 6. The conversion is slow, requiring two to three weeks at room temperature. Completion of the reaction was determined by 31 P NMR. The volume of solvent was reduced in vacuo by approximately two thirds. An equal amount of $CHCl_3$ or CH_2Cl_2 was added to increase miscibility with the ether which was added to initiate precipitation. The product was isolated as a pale yellow solid (0.372 g; 76% yield). The solid was separated (^{13}C) by filtration, washed with ether and dried <u>in vacuo</u>. NMR (DMSO): δ 131.87 (m, Ph-ipso), 131.00 (s, br, Phortho), 129.89 (s, br, Ph-meta), 128.56 (s, br, Ph-para), CH₂ and CH not observed)

Preparation of $[(DMSO)Pd(1)]^{2+}(7)$

It is simplest to proceed directly from the preparation of 5 to 7 via 6 without purification of 5 or 6. The chlorides were easily removed from 6 with Ag(BF4)
or Ag(AsF₆) to give 7. In 75 mL of 50:50 (v/v) CHCl₃/DMSO, 0.372 g (0.372 mmol) of 6 was stirred with 0.145 g (0.730 mmol) AgBF₄ for 2 h. AgCl (0.096 g) was collected (92% theoretical based on 2 Cl per Pd). The volume of the filtrate was reduced by half and ether added to initiate precipitation. Cooling of the mixture yielded 0.358 g (87% yield) of 7 as a pale yellow powder. The product is soluble in DMSO and CH₃CN. Complex 7 is stable in air in the solid state, but slowly decomposes in solution. In a similar experiement, 0.110 g (0.110 mmol) of 6 was reacted with 0.062 g (0.022 mmol) AgAsF₆ yielded 78% of complex 7. (¹H NMR (DMSO): δ 7.6 (40 H, br, m, Ph), 2.73 (4H, m, CH₂), 2.50 (8H, s, DMSO), 2.21 (6H, m, CH₂, CH)) (¹³C NMR (DMSO): δ 131.61 (m, Ph-ipso), 130.38 (s, Ph-ortho), 129.79 (s, Phmeta), 128.90 (s, Ph-para), 39.70 (s, DMSO))

Preparation of $[(CH_3CN)Pd(1)]^{2+}(8)$

Reprecipitation of 7 from CH₃CN with ether affords the title complex in which one molecule of CH₃CN remains associated with the metal complex in the solid state (8). (¹H NMR (CD₃CN): δ 7.5 (40H, br, m, Ph), 2.75 (4H, m, CH₂), 2.25 (6H, m, CH₂, CH), 1.96 (3H, s, CH₃CN-Pd)) (¹³C NMR (CD₃CN): δ 133.2 (A part of an AXX' system, ¹J_{P-C} = 20.53 Hz, ³J_{P-M-C} = 37.25 Hz, Ph-ipso), 131.6 (s, Ph-ortho), 129.9 (s, Ph-meta), 128.1 (s, Ph-para), CH₂ and CH not

observed, 117.28 (s, CN), 0.40 (pentet, CH₃ of CH₃CN & CD_3CN)

Preparation of $[Ni(1)][Cl0_4]_2$ (9)

Anhydrous $[Ni(CH_3CN)_6][ClO_4]_2$ was prepared from the hydrated salt by stirring overnight in 2,2-dimethoxypropane followed by addition of CH_3CN. The volume was reduced and ether added to precipitate the lavender blue product which was recrystallized from CH_3CN prior to further use.

Ligand 1 (0.0354 g, 0.0431 mmol) was dissolved in 5 mL benzene and added via syringe to a stirred solution of 0.0217 g (0.0431 mmol) [Ni(CH₃CN)₆][ClO₄]₂ in 50 mL CH₃CN at room temperature. During the addition, the solution turned orange brown but remained homogeneous. The reaction was stirred 16 h to produce the light yellow color characteristic of the product. The volume of the solution was reduced to approximately half under reduced pressure and the solution refridgerated to crystallize the product as light yellow prisms. (¹H NMR (CD₃CN): δ 7.63 (24H, m, Ph), 7.3-7.5 (16H, m, Ph), 2.75 (4H, m, CH₂), 2.50 (6H, m, CH₂, CH)) (¹³C NMR (CD₃CN): δ 131.0 (m, Ph-ipso), 130.0 (m, Ph-ortho, meta), 128.1 (m, Ph-para), CH₂ and CH not observed) X-ray Crystallographic Procedure for 4 Data Collection and Reduction

Crystals were grown from an CH₃CN solution of 4 by slow evaporation in air. A suitable crystal for data collection, approximately 0.10-0.12 mm on a side was selected, placed in a glass capillary and mounted on a standard goniometer. All intensity data were collected at room temperature. The unit cell parameters were initially calculated using an automatic indexing procedure¹⁰ and subsequently verified by oscillation photographs. Final lattice constants were determined by a least squares fit to the +20 values of 14 higher angle reflections. The intensity data were corrected for Lorentz and polarization effects. The standard deviation of a reflection was computed using the relationship:

 $I^2 - C_T + k_T C_B + (0.03C_T)^2 + (0.03C_B)^2$ where C_T and C_B represent total and background counts and k_T is a counting time factor. Table I contains a tabulation of the pertinent information relevant to data collection and reduction.

Structure Solution and Refinement

The majority of the non-hydrogen atom positions was identified using direct-methods routines.¹¹ The remaining non-hydrogen atoms were located via alternate cycles of

least squares calculations¹² and electron density difference density calculations.¹³ The atomic scattering factors used were those found in the International Tables.^{14a} Positions of the hydrogen atoms were calculated using an assumed C-H bond distance of 1.0 Å and a C-H bond angle of 109.

Analysis of residual electron density on an electron density difference map (maximum = $0.4 \text{ e}/\text{Å}^3$) indicated all atoms were accounted for by the model.

X-ray Crystallographic Procedures for 5⁹ Data Collection and Reduction

A crystal suitable for data collection, approximately 0.08-0.15 mm on a side was selected, attached to a glass fiber and mounted on a standard goniometer. All intensity data were collected at room temperature. The unit cell dimensions and Bravais lattice type were initially calculated using an automatic indexing procedure¹⁰ and subsequently verified by oscillation photographs. The observed systematic absences of 0k0, k = 2n+1 and h01, h+1 = 2n+1 indicated the space group $P2_{1/n}$. Final lattice constants were determined by a least squares fit to the +20 values of 12 higher angle reflections. The intensity data were corrected for Lorentz and polarization effects. Table

II contains a tabulation of the pertinent information relevant to data collection and reduction.

Structure Solution and Refinement

Analysis of palladium-palladium vectors from the three-dimensional Patterson map revealed the appropriate positions for the palladium atoms in the unit cell. The remaining non-hydrogen atoms were located via alternate cycles of least squares calculations¹² and electron density difference density calculation.¹³ The atomic scattering factors used were those found in the International Tables.^{14a} Positions of the hydrogen atoms were calculated using an assumed C-H bond distance of 1.0 Å. Thermal parameters for the phenyl rings and the DMSO atoms were refined isotropically. The data were reweighted prior to the final least squares cycle so that $\omega(|F_0| - |F_c|)^2$ was approximately constant as a function of sin0.

Restraints^{14b} were imposed upon the C-C bond distances in the phenyl rings due to the relatively small contribution to the total scattering made by the individual carbon atoms when compared to the scattering power of the molecule and possible disorder in the ring positions. Analytical scattering factors were used¹⁵, and the targets for the restrained phenyl distances were set to 1.40 . Residual electron density found on an electron density

difference map indicated the possible presence of one or more highly disordered DMSO groups and some disorder in the phenyl ring orientations. These artifacts were not modelled due to the small occupancies of these disordered sites (<0.16). Since estimated standard deviations are not obtainable from RESLSQ, the parameters were used without restraints in a full-matrix least squares procedure. The esd's were obtained from the inverse of the normal equations matrix and therefore represent maxima for these values.

.

RESULTS AND DISCUSSION

Tetraphosphine 1 and its oxide derivative 4 Ligand 1 was prepared in moderate yields (50 - 60%) and recrystallized from benzene to give a crystalline product at room temperature. It is stable in air, but susceptible to oxidation as a DMSO solution. The tetraphosphine 1 is very soluble in most organic solvents such as benzene and CH₂Cl₂, and oxidation was not observed when these solutions were exposed to air.

The ³¹P NMR spectrum (Table III) shows a single sharp resonance at -22.0 ppm. The phenyl region of the 1 H NMR spectrum has two broad multiplets between 7.36 and 7.22 ppm, and 7.20 and 7.08 ppm (Figure 4a). In all of the tetra-functional derivatives of 2, the methylene hydrogens are diastereotopic and appear as ABX quartets. The resonances due to the methylene hydrogens in 1 are seen as multiplets at 2.25 and 2.05 ppm. The high-field multiplet is complex, and represents one set of diastereotopic methylene hydrogens and the methine hydrogens. The ABX pattern of the low-field CH2 resonance is well resolved, with a two-bond coupling between the geminal hydrogens of 12.37 Hz, and a vicinal three-bond H-H coupling of 5.8 Hz. The peaks are broadened with shoulders due to a two-bond and probably a four-bond coupling to phosphorus which is small, on the order of 1 Hz.

Figure 4. Phenyl region of a) ¹H NMR spectrum and b) ^{13}C NMR spectrum of 1

In the ¹³C NMR spectrum (Figure 4b), the resonances for the phenyl group carbon atoms appear as doublets with P-C coupling constants of 12.7 Hz (<u>ipso</u>), 8.6 Hz and 8.8 Hz (<u>ortho, meta</u>), and 6.7 Hz (<u>para</u>). The methine carbon is coupled to all four phosphorus atoms, giving a triplet of triplets which appear as an uneven pentet with ${}^{2}J_{P-C} =$ 11.91 Hz and ${}^{3}J_{P-C} = 7.95$ Hz. The methylene carbon appears as an unsymmetrical singlet.

In the presence or absence of air, DMSO solutions of 1 containing 1 mole percent water are easily oxidized by heating or sonication, and are more slowly oxidized at room temperature. The oxidation of tertiary phosphines by DMSO in the presence of catalytic amounts of iodine, acid, or transition metal ions has been reported (equation 1).¹⁶⁻¹⁹ In each case the function of the catalyst is to increase

 $R_3P + (CH_3)_2SO \longrightarrow R_3P(0) + (CH_3)_2S$ (1)

the electrophilic nature of either the phosphorus or sulfur, causing nucleophilic attack by oxygen or phosphorus, respectively. In the strict absence of water or other impurities, oxidation is only achieved in low yield at temperatures over $180 \circ .^{19}$ The oxidation of aryl tertiary phosphines by DMSO has not been widely used in synthesis because of inefficiency and the subsequent

difficulty in separating the products. We have found the oxidation of 1 by DMSO to be greatly enhanced by sonication, leaving only volatile dimethyl sulfide, excess DMSO and the product phosphine oxide.

A single crystal of the oxide derivative 4, isolated from an acetonitrile solution, was suitable for X-ray crystallographic analysis. The ORTEP diagram of 4,²⁰ together with a labeling scheme is presented in Figure 5, the unit cell is given in Figure 6. Selected bond distances, bond angles and interplanar angles can be found in Tables IV,V, and VI; positional parameters appear in Table VII. Tables of anisotropic thermal parameters, hydrogen atom coordinates and structure factors appear in Appendix I.

There are two crystallographically unique molecules in the unit cell. One half of each molecule is related to its second half by an inversion center at the center of the skeletal CH-CH bond. In both molecules the phosphoryl oxygen atoms are oriented in the same direction in a paddle wheel fashion due to hydrogen bonding which is indicated in Figure 5 by dashed lines. The difference between the two molecules is found in the angles of the phenyl ring planes (A, B; C, D; E, F;and G, H) relative to the remainder of the molecule. The greatest deviation lies between the

pairs of rings C, D and E, F which are rotated by almost 60° relative to one another.

The oxide of bis(diphenylphosphino)methane (dppm) similarly crystallizes with two unique molecules in the unit cell, and has P-O bond lengths varying from 1.484(5) to 1.500(5) Å.²¹ Other non-hydrogen bonded systems have P-O bond distances that fall between 1.48 and 1.50 Å $.^{22-23}$ Three of the P-O distances in 4 fall at least at the upper limit, if not outside of this range: 1.468(1) Å at Pl, 1.511(1) Å at P2, 1.547(2) Å at P3, and 1.515(1) Å at P4. The lengthening of the P-O bonds may be due to weak intramolecular hydrogen bonding. Each phosphoryl oxygen atom is hydrogen bonded to a methylene of an adjacent "arm". This also accounts for the paddle wheel orientation of the four arms, each one being pulled over the following methylene. Bond distances between oxygen and hydrogen bonded atoms are typically between 2.5 and 2.8 Å 22 The distances between the hydrogen bonded oxygen and carbon atoms in 4 are 3.18(1) Å at 01, 3.20(1) Å at 02, 3.16(1) Å at 03 and 3.17(1) Å at 04. The long P3-03 bond distance (1.547(2) Å) approaches the distance of a P-O single bond, which typically falls between 1.55 and 1.59 Å. The bond distances between the phosphoryl oxygen and the methylene carbons are long for hydrogen bonding. However, the long P-O bond distances suggest some interaction.

Figure 5. Ortep diagram of the two crystallographically unique molecules of 4

•

74

•

.

Figure 6. Diagram of the unit cell of 4

.

;

ł

•

The O-H distances are 2.37(1) Å at O1, 2.20(1) Å at O2, 2.17(1) Å at O3, and 2.34 Å at O4, with O-H-C angles of 138.6(3)°, 172.0(3)°, 169.7(2)°, and 140.4(3)°, respectively. However, the hydrogen atom positions were calculated based on idealized tetrahedral geometry at carbon and C-H bond lengths of 1.00 Å, and may not accurately reflect the bonding situation.

The ^{31}P NMR shift of 4 occurs at 37.6 ppm. In the ^{1}H NMR spectrum, two ABX patterns are observed for the ortho hydrogens of the phenyl groups with coupling constants of 7.65 and 7.62 Hz, and 29.85 and 29.72 Hz (Figure 7). The meat and para hydrogens appear as a complicated eleven line multiplet that was not resolved. In the solid state, inequivalency arises from the orientation of one ortho hydrogen toward the phosphoryl oxygen and the other toward the bulk of the molecule. In solution, however, these should become equivalent through rotation. Since strong hydrogen bonding is prevalent in the solid state, it is likely to be responsible for the inequivalency in solution through restricted rotation about the P-Ph bond. The 13 C NMR spectrum does not exhibit the same inequivalency, giving single resonances for the ipso, ortho, meta, and para carbons with J_{P-C} values of 6.13 and 8.28 Hz for the ortho and meta, and 11.74 Hz for para carbons. No coupling to phosphorus was observed for the <u>ipso</u> carbon. The 1 H and

a.

Figure 7. Phenyl region of the a) 1 H NMR spectrum of 4, and b) 13 C NMR spectrum of 4

 13 C NMR spectra were taken for the same sample, and it is not clear why the inequivalency of the <u>ortho</u> hydrogens is absent in the 13 C spectrum.

Metal Complexes of 1

Attempts to produce Pd(II) and Pt(II) complexes of 1 met with complicated results prior to the discovery of the synthetic route discussed below. Reaction of 1 with $PdCl_2$ in ethanol, DMSO, or CH_3CN , or with $[PdCOC1]_n$ in CH_2Cl_2 yielded inconsistent product distributions with ³¹P NMR resonances of various intensities in the regions 31 - 30, 20, -5 ppm, and for the uncoordinated ligand 1 at -22 ppm. <u>Dipalladium Complex 5</u>

Reaction of (PhCN)₂PdCl₂ with 1 in benzene yielded the dinuclear complex 5 regardless of the stoichiometry of the reactants. When the reaction was done with mole ratios ranging from one ligand to one (PhCN)₂PdCl₂, to one ligand to two (PhCN)₂PdCl₂, 5 precipitates, leaving the excess ligand in solution. The product is a pale yellow solid soluble only in DMSO and stable in both the solid state and in solution. Plate-like crystals for X-ray analysis were grown from a DMSO solution by slow evaporation in air.

The ORTEP diagram and labeling scheme is given in Figure 8.²⁰ A view containing only the heavy atoms and the skeletal carbons is given in Figure 9. Selected bond

distances and bond angles appear in Tables VIII and IX. The atomic positional parameters are listed in Table X. Tables of anisotropic thermal parameters, hydrogen atom coordinates, and structure factors are given in Appendix II.

The stereochemistry at Pd is essentially square planar with the Pd atom residing 0.071 Å out of the plane. The six-membered rings formed by the Pd, two P, and three C atoms of the ligand skeleton are in the chair conformation and are approximately orthogonal. The phenyl rings are anti-diaxial rather than syn-diaxial to avoid 1,3-syndiaxial steric interactions.

Considering each half of the complex as a P_2 -Pd-Cl₂ unit, gives rise to an analogue to the structurally characterized Cl₂Pd((PPh₂)₂(CH₂)_n) series of compounds, where n = 1 (dppm), 2 (dppe), or 3 (dppp).^{23,24} Within this series there is no reason to expect the electronic properties of the phosphorus donor to vary except as a function of steric constraints in the complexes. The steric and resulting electronic properties of 1 relative to dppe and dppp can be qualitatively understood by including (PdCl₂)₂(1) in the series Cl₂Pd(diphosphine) (Figure 10).

For this consideration, the L = dppm (n = 1) case will be omitted. In this case the electronic and steric factors were determined to be much more complex for dppm than for

Figure 8. Complete ortep diagram of 5

÷.

Figure 9. Ortep diagram of 5, showing only the heavy atoms and skeletal carbons

dppe and dppp owing to the small bite angle of dppm which places the P atoms unusually close to the Pd.²⁵

The steric bulk in Pd(L)Cl₂ increases as L is changed from dppe (n = 2), to dppp (n = 3) and this increase would be expected to be very similar between dppp and ligand 1. The bond angles around the Pd and P atoms are an indication of steric strain, and the Pd-P and Pd-Cl bond distances provide a simple measure of this effect on the electronic nature of the phosphines. Coordination of dppe forms a five-membered chelate ring which creates the least strain and forms a nearly ideal square planar geometry around Pd. The addition of another methylene in the chelate ring to form dppp or 1 causes a widening of the P-Pd-P angle. For dppe the P-Pd-P angle is 85.82(7)°; for dppp, it is 90.58(5)° and in the L = 1 analogue, the angle is further increased to 93.7(4) and $94.5(5)^{\circ}$. There is a corresponding decrease in the Cl-Pd-Cl angle from 94.19(7) for dppe, to 90.78(5)° for dppp, and 89.6(4)° and 90.65(6)° for 1. The Cl-Pd-Cl angle in (PdCl₂)₂(1) does not decrease as much as might be predicted based on the increase in the P-Pd-P angle. The angle between the Cl atoms appears to have reached a minimum relative to the distortion in the complex. The conformational strain induced by the propylene ring and the interactions among

. .

Figure 10. Ortep diagrams of a) $Cl_2Pd(dppe)_2$, b) $Cl_2Pd(dppp)_2$, and c) $(Cl_2Pd)_2(1)$

phenyl groups must now be alleviated by deviation from planarity in the P₂-Pd-Cl₂ unit.

There is a similar trend between the dppe and dppp complexes in the lengthening of the P-Pd bonds and concomitant shortening of the Cl-Pd bonds. The P-Pd bond length increases from 2.233(2) and 2.226(2) Å for the dppe complex to 2.244(1) and 2.249(2) Å for the dppp complex. The bond distances in 5 are similar to those values for the dppe and dppp analogues, although large standard deviations in the bond distances of 5 due to disorder in the molecule, prevent the identification of a trend. The Pd-P bond lengths in 5 are between 2.23(1) and 2.26(1) Å. The Cl-Pd bond lengths are between 2.357(2) and 2.362(1) Å in PdCl₂dppe, 2.351(1) and 2.358(2) Å in PdCl₂dppm, and between 2.32(1) and 2.36(1) Å in 5.

The length of the Pd-Cl bonds can be used as a measure of the trans effect of the phosphine, which is dependent upon the basicity of the phosphine. A large trans effect causes the lengthening of the Pd-Cl bond by strong sigma electron donation of the phosphorus. Within the series being discussed, the dppe complex has the longest Pd-Cl bond distances, and thus is the more basic phosphine. The substituents on the phosphorus atoms within the series are equivalent so that electronic arguments can not be used to rationalize this difference in bond lengths. The five

membered chelate ring of dppe induces the least steric strain and this results in an effectively more basic phosphine. In comparing dppp and 1, there is little difference in the bond lengths around the Pd atom but there is a substantial increase in the P-Pd-P bond angle. It is unclear why this angle in $(PdCl_2)_2(1)$ is larger than in the dppp analogue. There are no interactions within the PdCl_2(1) unit or between the two units in the molecule which could be used to rationalize this observation. Monopalladium_Complexes

Further reaction of 5 with an equivalent of the ligand 1 yields the monopalladium complex 6 in which all four phosphines are apparently coordinated to one metal atom.

The reaction of 5 with ligand 1 occurs in DMSO and requires relativley long reaction times of 2 to 3 weeks. Mild heating reduces the reaction time, but an inert atmosphere and dry DMSO are required to prevent oxidation of the ligand. In the presence of air, or in the absence of air at temperatures over 80 °C, extensive oxidation of the ligand resulted with minor yield of the Pd product.

Monitoring the reaction by ^{31}P NMR initially showed two sharp resonances at +21.4 and -22.0 ppm for 5 and the ligand, respectively. As the reaction progressed, these peaks divided into multiplets and began to disappear as a group of 3 to 5 peaks centered at +31 +6 ppm grew. The end

of the reaction was signalled by the presence of a single sharp resonance at +30.8 ppm. No absorptions were observed in the IR that could be assigned to Pd-Cl and the conductance of 6, 42.6 cm² $^{-1}$ mol Ω^{-1} , in DMSO is consistent with a two to one electrolyte (Table III). The ¹H NMR of 6 is equivalent to that of 7 in DMSO and the cation was further characterized as 7.

The monopalladium dication was characterized as the tetrafluoroborate salt (7). Crystals of 7 could not be obtained, thus eliminating the possibility of an X-ray structure analysis. A single resonance in the ³¹P NMR spectrum indicated equivalence of the four phosphine arms. The ¹H NMR spectrum is consistent with equivalency, giving a pattern very similar to the free phosphine. The phenyl resonances remain a complicated multiplet but shifted downfield by 2 ppm. The methylene protons appear as two complex ABX multiplets, one overlying the methine protons, and shifted downfield by 0.4 and 0.2 ppm from the uncoordinated ligand 1. The 13 C NMR spectrum was not very informative, giving broadened signals from which coupling constants could not be determined. The resonance for the ipso carbon, at 131.6 ppm has shifted upfield by 7 ppm from the free ligand, and the ortho and meta carbons are similarly shifted upfield by 3 ppm. The para carbon remains close to that of the free ligand at 128.9 ppm. The

• • • • • •

methylene and methine carbons were not observed, and the solvent, DMSO appears at 39.7 ppm.

It is interesting to note that in all of the metal complexes of 1 studied, the methylene and methine carbons were not observed in the 13 C spectra. The intensity of the resonances representing these carbons is already diminished in the spectrum of the free ligand because of altered relaxation times due to proximity to the phosphorus atom and the presence of only one hydrogen on the methine carbon. Coordination of 1 to metal ions further increases the relaxation times, thus decreasing the intensity of those signals.²⁶

When 7 as the BF4⁻ salt was isolated from a DMSO solution, DMSO remains in the complex. In CH₃CN the ¹H NMR spectrum did not show a shift in the resonance for coordinated DMSO relative to free DMSO, which may be due to exchange with residual DMSO that was difficult to remove. Coordinated CH₃CN was not observed in the spectrum. When run in DMSO, the ¹H NMR spectrum showed only one broad peak for DMSO. A shift in the resonances for DMSO upon coordination to Pd may not be observed because of fast exchange with free DMSO on the NMR time scale. On the other hand, the change in the chemical shift may be very small. DMSO coordinated to Pd (as verified by IR spectral

data) shows changes in shifts in the ¹H NMR spectra from 0.02 to 0.80 ppm.²⁷

Generally, DMSO coordinates to soft metals such as Pd and Pt via the sulfur atom. When DMSO is bonded through S, v_{S-0} is shifted from 1055 cm⁻¹ in free DMSO to higher energy, i.e., between 1116 and 1157 cm⁻¹ in the complex.^{28,29} Recently it has also been determined that DMSO will coordinate through the oxygen atom when the other ligands are bulky.²⁹ In this case v_{S-0} shifts to lower energy, between 900 and 1100 cm⁻¹. The infrared data are diagnostic regarding sulfur vs. oxygen coordination, but such spectra are complicated by the presence of several other medium to strong absorptions in the same region. The IR spectrum of 7 shows a strong absorption at 1008 cm⁻¹, indicating coordination of DMSO to Pd through the O atom, which is most reasonable considering the steric bulk of the ligand.

When 7 is precipitated from CH_3CN with ether, one molecule of solvent is retained in the solid to give 8. The ¹H NMR spectrum of 8 taken after 16 h of drying at 0.10 mm Hg continued to show one CH_3CN molecule per molecule 8. In the ¹H NMR there is a downfield shift of CH_3CN of 0.03 ppm. Other coordination complexes in which CH_3CN is bonded to a metal show a downfield shift of 0.50 ppm,²⁸ which is significantly larger than that observed for 8.²⁷ The ¹³C

NMR spectrum taken at 45 ° does show upfield shifts of 1 ppm for the nitrile carbon and 0.9 ppm for the methyl carbon. The phenyl region of this spectrum is similar to that of 7, giving broad, poorly resolved signals.

The possibility of fast exchange of the phosphines on the NMR time scale was explored with variable temperature NMR. The 31 P NMR remains a single resonance at -43°, suggesting all four phosphine arms are coordinated to the Pd. However, as we have seen in the 13C NMR spectrum, at this temperature, the phenyl region of the spectrum remains broad and poorly resolved. The temperature was limited by the solvent, CH3CN, and a mechanism in which coordinated and uncoordinated phosphine arms are exchanging remains a possibility. Removal of both chlorides from the system was verified by precipitation of a stoichiometric amount of AgCl, and the absence of v_{Pd-Cl} in the IR spectrum. Additionally, the conductance of 8 as the BF_4 salt in CH₃CN, 195 cm² Ω^{1} mol⁻¹, lies within the expected range for a two-to-one electrolyte. The amibiguity of the low temperature 31 P and 13 C NMR spectra gives rise to possible displacement of a phosphine by DMSO or CH₃CN and fast rearrangement of the phosphines on the NMR time scale. Ni Complex 9

Reaction of 1 with Ni salts did not yield a dinuclear complex analogous to 5. In ethanol, reaction of $Ni(PF_6)_2$

hydrate yielded a variety of products including an insoluble compound which gave multiple resonances in the ³¹P NMR spectrum and was assumed to be polymeric in nature. The solution phase of the reaction gave resonances in the +31, +26, and +15 regions of the spectrum. Free ligand 1 was not observed in the spectra.

When an anhydrous Ni(II) salt was treated with ligand 1 in CH_3CN , a single product was obtained. Reaction of $[(CH_3CN)_6Ni](ClO_4)_2$ with 1 yielded the yellow complex 9 as the only product. Crystals of 9 were isolated, but were thin plates and unsuitable for X-ray diffraction. The ³¹P NMR chemical shift for 9 is very close to that for the palladium analogue 8 (31.5 ppm and 30.9 ppm, respectively). The ¹H NMR in CH₃CN is also very similar to that of complex 8. The phenyl hydrogens appear as broad multiplets at 7.63 and 7.4 ppm, the methylene and methine hydrogens at 2.75 and 2.50 ppm, respectively. No residual CH₃CN was detected in the spectrum suggesting that complex 9 is fourcoordinate.

Numerous Group 10 metal compounds have been reported that incorporate the ligand dppe. In addition to the metal diphosphine dichloride compounds which have already been discussed, homoleptic analogues such as $[Pd(dppe)_2](PF_6)_2$ can be obtained by the addition of another diphosphine in the presence of AgPF₆ (Figure 11).³⁰ This complex is

analogous to $[(DMSO)Pd(1)]^{2+}$ (7). The dppe complexes of Pd and Pt have been structurally characterized, as well as $[Pd(pMepe)_2]Cl_2$, pMepe = PhMeP(CH₂)₂PPhMe (Figure 12).³¹ When either two dppe or pMepe ligands are coordinated to a single metal ion, space-filling molecular models show that the substituents on P have greater freedom than the phenyl rings in 7. To reduce repulsions, they can be oriented

Figure 11. Ortep diagram for [Pt(dppe)2]Cl2

above and below the P_2 -Pd- P_2 plane as seen in Figures 11 and 12. In 7, however, the carbon backbone forces the two phenyl rings on P to be on the same side of the metal plane.

In molecular models of 7, the phenyl rings are forced to be locked in a very nearly vertical position by steric repulsions among the rings. Furthermore, the phenyl rings and one of their <u>ortho</u> hydrogen atoms form a very protected cavity for the coordinated metal. Figure 13 shows a sideon view and a view down the two-fold axis of this cavity.

Figure 12. Ortep diagram for [Pd(pMepe)2]Cl2

For simplification, two phenyl groups have been omitted from the front phosphorus atoms.

The protected environment afforded by ligand 1 should increase the stability of these complexes, but the steric and ring strain induced by the ligand may also play a counter role here. When all four P atoms of 1 are bonded to a single metal, the strain due to formation of 6 and 7 membered chelate rings and the repulsions among the phenyl rings might be expected to destabilize the complex, causing dissociation of one or more phosphine arms. The coordination of DMSO or CH₃CN to Pd in 7 indicates that there is some flexibility within the molecule, although it was noted that the changes in chemical shifts between the coordinated and free solvents were very small. It may be that the interaction between Pd and 0 of DMSO, or N of CH₃CN is weak due to the steric bulk of the ligand 1.

The opposing effects caused by the protected metal environment, the steric bulk of the phenyl rings, and what may be substantial ring strain are combined in complex 7. This combination has led to interesting chemistry involving small molecules and is being investigated further.

Figure 13. 'Two views of the metal cavity in M(1) complexes. Two phenyl rings have been omitted from the side view for clarity

. .

TABLES

96

. .
97a

.

Table I. Crystal data for 4

.

موردة المنبعة المتعاد والمربول والمو

•

Empirical Formula	C54H50P404
Formula weight	886.83
Space Group	P1
a (Å)	11.70(3)
ъ (Å)	21.80(3)
с (Å)	9.28(6)
α (°)	94.0(3)
β (°)	102.7(3)
γ (°)	88.4(2)
v (Å ³)	2302
μ (MoK _a) (cm ⁻¹)	2.04
pcalc (g cm ⁻³)	1.28
Τ (Κ)	290
Diffractometer	DATEX
Monochromator	oriented graphite
Reflections measured	hkl,hkl, hkl, hkl
Standard reflections ^a	1(measured every 100)
Reflections collected	3116
2θ _{max} (°) ^b	40.0
2θ _{min} (°)	3.5
Number of unique reflections	1207 (I>2θ(I))
^a No decay in the standa	rd intensity was noted.

^bThe 2 maximum was limited due to a rapid decrease in intensity above this point.

.

Table I. continued

	نہیں ہے۔ بیب نشیا کو بیپ نیٹ کہ بہت ہیں کی ہوت سے این برب سن مثلا تو جب نشا انال کو بیٹ این کا ت
Maximum number of parameters refined	319
R	0.0653
RC	0.0533
$\frac{c_{R_{\omega}}}{R_{\omega}} = [\sigma(F_0 - F_c)^2 / \Sigma \omega F_{\omega}]$	$[\sigma^2]^{\frac{1}{2}}, \ \omega = \sigma^{-2} \ (F_0).$

Table II. Crystal data for 5

···· ·· · · · · · · ·

_ ·· ···

Empirical formula	C54H50C14P4Pd2
Formula weight	1177.44
Crystal system	monoclinic
Space group	P2 _{1/n}
a (Å)	21.798(8)
ъ (Å)	13.927(5)
c (Å)	22.802(9)
α (°)	115.81(4)
ν (Å ³)	6231.(4)
μ(MoK _α) (cm ⁻¹)	8.56
Pcalc (g cm ⁻³)	1.34
T (K)	290

. **•** •

.

• · · · · · · · · ·

Table II. continued

Diffractometer	DATEX
Reflections measured	hkl, hkl, hkl
Standard reflections ^a	1 (measured every 100)
Reflections collected	6287 collected, 1946 observed (I>2θ(I))
$2\theta_{max}$ ()	50.0
$2\theta_{min}$ ()	3.5
Number of unique reflections	1996 (I>2 (I))
Maximum number of parameters refined	353
R	0.13
R_{ω}^{b}	0.11

a No decay correction applied.

 ${}^{b}R_{\omega} = [\sigma(|F_{0}| - |F_{c}|)^{2}/\Sigma \omega F_{0}^{2}]^{\frac{1}{2}}, \omega = \sigma^{-2}(F_{0}).$

.

Table III. 31P(1H) NMR, infrared, and conductance data.

Сотро	ound ⁵ ³¹ p	(ppm)	ν <u>M-X</u> (cm ⁻¹	L)
1	[HC(CH ₂ PPh ₂) ₂] ₂	-22.0		-
4	$[HC(CH_2P(0)Ph_2)_2]_2$	+38.2		-
5	(PdCl ₂) ₂ (1)	+21.4	316 296	w m
6	[(DMSO)Pd(1)]C1 ₂	+30.8		*p
7	[(CH ₃ CN)Pd(1)] ²⁺	+30.9		*
8	[(DMSO)Pd(1)] ²⁺	+30.9		*
9	[Ni(1)][C10 ₄] ₂	+31.4		-

^aAcceptable ranges for 1:1 and 2:1 electrolyte in DMSO are 20-40 and 45-90, respectively. In CH₃CN, acceptable ranges are 120-140 for 1:1, and 190-240 for 2:1.³² ^bNo absorption was observed in the expected region (150 tp 400 cm⁻¹).

- ----

• • • • • • • • • • • • •

الحي بين وحد الله التي وين حد الله التي وين حد التي التي وي حد التي التي التي ويه حد الله التي	یو وہ _ا ے این اور اور این اور وہ اور این اور اور اور این اور اور این این اور اور این اور
$\gamma P=0 (cm^{-1})$	Λ_{M} (cm ² mol ⁻¹ \dot{n}^{1}) (solvent) ^a
-	-
1186	-
-	5.16 (DMSO)
	(0.1.(0)(00)
-	42.1 (DMSO)
-	195 (CH ₃ CN)
-	44.6 (DMSO)
-	198 (CH ₃ CN)

atoms	distances	atoms	distances
P1 - 01	1.468(1)	P2 - 02	1.511(1)
P1 - C1A	1.814(2)	P2 - C1D	1.819(2)
P1 - C1B	1.816(2)	P2 - C1C	1.825(2)
P1 - C11	1.817(2)	P2 - C21	1.833(2)
P3 - 03	1.547(2)	P4 - 04	1.515(1)
P3 - C1E	1.801(2)	P4 - C1G	1.822(2)
P3 - C1F	1.832(2)	P4 - C1H	1.803(2)
P3 - C31	1.815(2)	P4 - C41	1.771(2)
C11 - C12	1.526(3)	C31 - C34	1.573(3)
C12 - C21	1.558(3)	C34 - C41	1.581(3)
C12 - C12	1.572(3)	C34 - C34	1.573(3)

.

.

Table V. Selected bond angles (°) in 4 $\,$

,

.

. . .

atoms	angle	atoms	angle
01 P1 C11	114.2(8)	02 P2 C21	114.8(8)
01 P1 C1A	113.5(9)	02 P2 C1C	113.2(9)
01 P1 C1B	109.0(8)	02 P2 C1C	113.2(9)
C11 P1 C1A	103.5(9)	C21 P2 C1D	105.3(9)
C11 P1 C1B	107.7(9)	C21 P2 C1D	104,0(9)
CIA P1 C1B	108.6(9)	C1C P2 C1D	105.5(9)
O3 P3 C31	116.3(8)	04 P4 C41	115.4(8)
03 P3 C1E	111.6(9)	04 P4 C1G	110.8(8)
03 P3 C1F	111.5(9)	O4 P4 C1H	112.8(9)
C31 P3 C1E	103.(1)	C41 P4 C1G	107.2(9)
C31 P3 C1F	106.6(9)	C41 P4 C1H	104.2(9)
CIE P3 CIF	107.(1)	C1G P4 C1H	105.8(9)
P1 C11 C12	117.(1)	P2 C21 C12	123.(1)
P3 C31 C34	128.(1)	P4 C41 C34	116.(1)
C11 C12 C12	110.(2)	C31 C34 C34	110.(1)
C11 C12 C21	107.(1)	C31 C34 C41	108.(1)
C12 C12 C21	112.(2)	C34 C34 C41	112.(2)

.

....

ring l	ring 2	angle	ring 1	ring 2	angle
A	В	66.09 ^a	A	С	92.08
A	D	65.15	В	С	73.63
В	D	60.06	C	D	27.27
E	F	103.07	Е	G	115.67
Е	н	43.05	F	G	100.60
F	н	89.54	G	н	78.78

Table VI. Selected interplanar angles (°) in 4

^aEquation of plane given by $coeff_1 * x + coeff_2 * y + coeff_3 * z = result.$

.

. .

• · · · • •

atom	x	у	z	U
P1	2867.(5) ^c	5505.(3)	6967.(7)	71.
P 2	3799.(5)	3634.(3)	4430.(6)	61.
P 3	2323.(6)	185.(3)	8534.(7)	76.
P4	-1237.(5)	1333.(3)	8363.(6)	59.
01	2288.(10)	4931.(5)	7109.(12)	71.
02	4746.(10)	3276.(5)	3853.(12)	59.
03	3008.(10)	-401.(6)	9090.(15)	86.
04	-370.(10)	1473.(5)	7439.(13)	69.
C11	4308.(15)	5399.(8)	6549.(20)	53.
C12	4410.(13)	4949.(8)	5245.(20)	47.
C21	4321.(15)	4287.(8)	5740.(19)	61.
C31	749.(15)	177.(7)	8367.(21)	58.
C34	43.(19)	299.(8)	9622.(19)	59.
C41	-1204.(16)	567.(8)	8892.(19)	56.
CIA	3139.(15)	6006.(8)	8684.(20)	56.(6)

Table VII. Atom coordinates (fractional x 10^4) and isotropic thermal parameters^a (Å² x 10^3) for isotropic atoms in $4^{a,b}$

^aP, O, and skeletal C atoms were refined anisotropically. The remaining atoms were refined isotropically.

isotropically. ^bU = 1/3 U_{ij}a-i a-ja_ia_j x 10³ where the temperature factors are defined as exp(-2pi sum h_ih_ja_ia_jU_{ij}). ^cEstimated standard deviations are given in parentheses for the least significant digits.

• • • • • • • •

.

Table VII. continued

atom	x	у	Z	U
C2A	2731.(17)	5795.(9)	9805.(926)	87.(7)
C3A	2874.(18)	6165.(10)	11121.(24)	91.(8)
C4A	3422.(18)	6713.(10)	11227.(24)	90.(7)
C5A	3795.(16)	6949.(9)	10105.(25)	78.(7)
C6A	3681.(16)	6570.(9)	8762.(22)	75.(7)
ClB	1957.(16)	5919.(19)	5491.(19)	47.(5)
C2B	2362.(15)	6446.(8)	4993.(20)	56.(6)
C3B	1613.(18)	6734.(9)	3887.(21)	71.(6)
C4B	473.(17)	6530.(21)	3307.(21)	82.(7)
C5B	88.(17)	6023.(9)	3842.(21)	71.(6)
C6B	861.(17)	5710.(8)	4949.(21)	69.(6)
CIC	2685.(16)	3954.(8)	2969.(21)	49.(5)
C 2 C	2878.(15)	3802.(7)	1503.(20)	52.(6)
C3C	2015.(19)	4039.(9)	297.(23)	75.(7)
C4C	1050.(19)	4328.(9)	606.(24)	79.(7)
C 5 C	835.(17)	4454.(9)	2012.(25)	78.(7)
C6C	1695.(18)	4239.(8)	3179.(21)	63.(6)
ClD	3003.(15)	3173.(8)	5436.(21)	54.(6)
C2D	3424.(15)	3159.(8)	6956.(21)	59.(6)
C3D	2882.(18)	2756.(9)	7663.(23)	93.(7)
C4D	1962.(17)	2402.(8)	6920.(23)	66.(6)
C5D	1560.(15)	2440.(8)	5472.(23)	69.(6)

.

• • • • • • • •

.

Table	VII.	continued

atom	x	у	Z	 U
C6D	2119.(17)	2819.(9)	4672.(20)	71.(6)
ClE	2466.(17)	328.(9)	6693.(21)	61.(6)
C2E	3238.(17)	-53.(9)	6143.(23)	73.(7)
C3E	3475.(18)	31.(10)	4738.(25)	86.(7)
C4E	2898.(18)	489.(10)	4041.(22)	75.(7)
C5E	2049.(20)	869.(10)	4453.(27)	102.(8)
CGE	1855.(18)	795.(10)	5873.(24)	84.(7)
ClF	2861.(16)	869.(8)	9726.(19)	54.(6)
C2F	2237.(15)	1393.(9)	9934.(19)	60.(6)
C3F	2723.(18)	1886.(9)	10871.(21)	68.(6)
C4F	3919.(18)	1862.(9)	11535.(21)	73.(7)
C5F	4530.(17)	1356.(10)	11316.(23)	84.(7)
C6F	4031.(18)	837.(9)	10439.(22)	74.(6)
ClG	-1013.(16)	1835.(8)	10052.(21)	60.(6)
C2G	-1468.(16)	1722.(8)	11227.(22)	64.(6)
C3G	-1331.(18)	2157.(10)	12474.(24)	94.(8)
C4G	-776.(17)	2705.(10)	12438.(22)	77.(7)
C5G	-372.(17)	2822.(10)	11206.(24)	84.(7)
C6G	-442.(15)	2381.(9)	10038.(21)	66.(6)
ClH	-2737.(17)	1458.(8)	7421.(23)	67.(6)
C2H	-2917.(18)	1713.(9)	6134.(23)	75.(7)
СЗН	-4051.(19)	1862.(8)	5343.(20)	71.(6)

Table VII. continued

.

للحادة المستاد سيبد والمستري والع

atom	x	`у	z	U
С4Н	-4988.(16)	1754.(8)	5982.(21)	65.(6)
C5H	-4856.(17)	1453.(9)	7237.(24)	76.(7)
CGH	-3708.(18)	1334.(8)	8047.(20)	72.(7)
····				- _ ~

Table VIII. Selected bond lengths (Å) in 5

atoms	distances	atoms	distances
Pdl - P7	2.26(1)	Pd2 - P9	2.23(1)
Pdl - P8	2.24(1)	Pd2 - P10	2.25(1)
Pdl - Cl3	2.32(1)	Pd2 - C15	2.34(1)
Pdl - Cl4	2.34(1)	Pd2 - C16	2.36(1)
P7 - C11	1.90(4)	P8 - C12	1.82(4)
P7 - C1A	1.84(5)	P8 - C1C	1.87(4)
P7 - C1B	1.83(5)	P8 - C1D	1.81(5)
P9 - C14	1.78(5)	P10 - C15	1.80(4)
P9 - C1E	1.84(5)	P10 - ClG	1.78(4)
P9 - C1F	1.81(5)	P10 - C1H	1.82(5)
C11 - C13	1.50(6)	C12 - C13	1.54(6)
C13 - C16	1.62(6)	C14 - C16	1.61(6)
C15 - C16	1.47(5)		

.....

.

т U	٥
-----	---

Table IX. Selected bond angles (°) in 5

atoms	angle	atoms	angle
C13 Pd1 C14	89.6(4)	C15 Pd2 C16	90.6(6)
C13 Pd1 P7	88.0(5)	C15 Pd2 P9	86.8(5)
C13 Pd1 P8	174.0(4)	C15 Pd2 P10	173.5(5)
C14 Pd1 P7	176.0(4)	C16 Pd2 P9	176.5(6)
C14 Pd1 P8	88.4(4)	C16 Pd2 P10	87.8(6)
P7 Pd1 P8	93.7(4)	P9 Pd2 P10	94.5(5)
Pd1 P7 C11	118.(1)	Pd1 P8 C12	118.(1)
Pd1 P7 C1A	114.(1)	Pdl P8 ClC	107.(1)
Pd1 P7 C1B ·	111.(2)	Pd1 P8 C1D	118.(1)
C11 P7 C1A	98.(2)	C12 P8 C1C	103.(2)
C11 P7 C1B	102.(2)	C12 P8 C1D	103.(2)
C1A P7 C1B	113.(2)	C1C P8 C1D	106.(2)
Pd2 P9 C14	119.(2)	Pd2 P10 C15	119.(1)
Pd2 P9 C1E	114.(1)	Pd2 P10 C1G	108.(2)
Pd2 P9 C1F	110.(1)	Pd2 P10 C1H	115.(2)
C14 P9 C1E	100.(2)	C15 P10 C1G	105.(2)
C14 P9 C1F	103.(2)	C15 P10 C1H	96.(2)
C1E P9 C1F	109.(2)	CIG P10 C1H	113.(2)

• • • • • • • •

Table IX.	continued
-----------	-----------

atoms	angle	atoms	angle
P7 C11 C13	114.(2)	P9 C14 C16	114.(3)
P8 C12 C13	114.(2)	P10 C15 C16	112.(3)
C11 C13 C12	112.(4)	C13 C16 C14	106.(3)
C11 C13 C16	111.(4)	C13 C16 C15	113.(3)
C12 C13 C16	111.(3)	C14 C16 C15	116.(3)

Table X. Atom coordinates (fractional x 10⁴) and equivalent isotropic thermal parameters^{a,b} (x 10³) for 5

atom	x	у	Z	U
Pd1	2759.(2) ^c	551.(2)	2192.(2)	53.
Pd2	5486.(2)	5439.(3)	1970.(2)	70.
C13	1843.(7)	-268.(9)	1402.(7)	78.
C14	2707.(6)	-457.(8)	2992.(6)	72.
C15	6407.(7)	5552.(10)	1707.(7)	100.

 $a_{U} = 1/3$ $U_{ij}a_{i} a_{j}a_{i}a_{j}$ x 10³ where the temperature factors are defined as exp (-2 $h_{i}h_{j}a_{i}a_{j}U_{ij}$).

^bPd, Cl, and P atoms were refined anisotropically. The remaining atoms were refined isotropically.

^cEstimated standard deviations are given in parentheses for the least significant digits.

*--

.

• -----

Table X. continued

atom	x	У	Z	U
C16	5556.(9)	7102.(8)	2198.(10)	134.
P7	2810.(7)	1431.(8)	1383.(6)	53.
P 8	3708.(6)	1204.(7)	2965.(5)	38.
P 9	5489.(7)	3865.(8)	1786.(6)	64.
P10	4688.(6)	5341.(8)	2341.(6)	61.
C11	3303.(21)	2601.(23)	1611.(18)	36.(9)
C12	3943.(21)	2408.(23)	2828.(18)	36.(9)
C13	3991.(23)	2519.(26)	2177.(21)	47.(10)
C14	4770.(24)	3166.(28)	1687.(22)	61.(12)
C15	4107.(19)	4344.(26)	2091.(17)	40.(9)
C16	4466.(22)	3421.(26)	2197.(20)	43.(11)
ClA	1982.(25)	1909.(28)	800.(23)	62.(12)
C2A	1839.(36)	2052.(40)	149.(34)	110.(19)
C3A	1219.(42)	2454.(45)	-281.(36)	129.(22)
C4A	739.(35)	2709.(37)	-58.(32)	106.(18)
C 5 A	822.(39)	2566.(40)	593.(36)	114.(19)
CGA	1502.(35)	2166.(39)	1024.(32)	104.(19)
ClB	3253.(26)	774.(31)	984.(25)	6.(11)
C2B	3559.(34)	1309.(42)	667.(32)	31.(15)
C3B	3749.(46)	869.(55)	222.(440)	68.(24)
C4B	3634.(48)	-109.(54)	91.(45)	65.(25)
C 5 B	3329.(56)	-644.(76)	408.(52)	106.(32)

. Table X. continued

atom	x	у	Z	U
C6B	3139.(39)	- 202.(44)	854.(38)	45.(21)
ClC	4444.(20)	458.(31)	3017.(18)	43.(8)
C 2 C	4360.(24)	-483.(38)	2788.(21)	68.(12)
C3C	4926.(38)	-1042.(40)	2882.(32)	102.(18)
C4C	5579.(28)	-658.(37)	3205.(25)	80.(15)
C5C	5663.(30)	283.(39)	3436.(27)	87.(17)
C6C	5097.(25)	843.(26)	3341.(22)	53.(12)
ClD	3775.(19)	1271.(24)	3798.(18)	31.(9)
C2D	3627.(25)	2150.(29)	4000.(23)	57.(12)
C3D	3761.(32)	2290.(37)	4650.(30)	94.(17)
C4D	4043.(28)	1547.(34)	5097.(26)	76.(15)
C5D	4192.(21)	670.(28)	4895.(20)	50.(11)
CGD	4060.(20)	527.(32)	4245.(19)	50.(9)
ClE	5552.(27)	3575.(29)	1029.(24)	59.(12)
C2E	4994.(32)	3764.(36)	437.(31)	86.(15)
C3E	5006.(41)	3475.(50)	-144.(39)	132.(24)
C4E	5576.(33)	3002.(35)	-128.(30)	84.(16)
C5E	6135.(33)	2817.(35)	464.(32)	93.(17)
CGE	6124.(36)	3105.(40)	1046.(34)	112.(20)
ClF	6181.(24)	3287.(29)	2462.(22)	53.(12)
C2F	6580.(34)	3867.(38)	2989.(32)	88.(16)
C3F	7118.(34)	3470.(41)	3531.(31)	96.(17)

.

·• ·- ····

т	ab	le	x.	cont	٤i	nued
-	a 0	T C		0011	~ ~	II WC W

.

atom	x	у	2	ע ע
C4F	7256.(36)	2492.(45)	3544.(32)	101.(18)
C 5 F	6855.(45)	1910.(52)	3019.(43)	134.(25)
C6F	6317.(35)	2308.(41)	2478.(33)	99.(18)
ClG	5112.(23)	5273.(28)	3209.(21)	50.(11)
C2G	4829.(35)	4802.(38)	3572.(34)	104.(20)
C3G	5180.(36)	4776.(40)	4250.(34)	103.(20)
C4G	5815.(48)	5218.(52)	4563.(43)	149.(27)
C5G [.]	6097.(33)	5690.(39)	4199.(32)	106.(18)
C6G	5746.(23)	5719.(26)	3523.(21)	49.(11)
С1Н	4043.(27)	6278.(32)	2050.(26)	73.(14)
C2H	3841.(39)	6729.(41)	2483.(34)	109.(19)
СЗН	3336.(40)	7433.(45)	2261.(37)	115.(20)
C4H	3034.(36)	7686.(43)	1604.(36)	113.(20)
C5H	3235.(58)	7236.(67)	1170.(51)	182.(34)
C6H	3740.(40)	6531.(48)	1392.(37)	121.(22)
S	2925.(18)	4458.(26)	10026.(16)	211.(11)
C1	2340.(49)	4910.(49)	10345.(47)	163.(32)
C 2	2895.(52)	5126.(52)	9431.(49)	170.(33)
0	3329.(27)	3701.(37)	330.(25)	143.(16)

.

.

REFERENCES

1.	Meek, D. W. in "Homogeneous Catalysis with Metal
	Phosphine Complexes" Pignolet, L. H., ed., 1983,
	Plenum Press: New York, Chpt.3.
	Tolman, C. A. <u>Chem. Rev.</u> 1977, <u>77</u> , 315 <i>.</i>

- McAuliffe, C. A., ed. "Transition Metal Complexes of Phosphorus, Arsenic and Antimony Ligands"; Macmillan Press: New York, 1973.
- 3. Sacconi, L.; Dapporto, P.; Stoppioni, P. <u>Inorg. Chem.</u> 1978, <u>17</u>, 718.
- 4. Bartsch, R.; Heitkamp, S.; Morton, S.; Peters, H.; Stelzer, O. <u>Inorg. Chem.</u> 1983, <u>22</u>, 3624.
- 5. Hartley, F. R. "The Chemistry of Platinum and Palladium"; Applied Science Publishers: London, 1973.
- 6. Weinges, K.; Spanig, R. <u>Chem. Ber.</u> 1968, <u>101</u>, 3010.
- 7. Bianco, V. P.; Doronzo, S. <u>Inorg. Chem.</u> 1969, <u>16</u>, 4521.
- Still, W. C.; Mitra, M. K. <u>J. Org. Chem.</u> 1978, <u>43</u>, 2933.
- 9. X-ray crystallographic analysis was performed by Lance J. Miller under the direction of Dr. R. A. Jacobson. This work was supported in part by the U.S. Department of Energy under contract No. W-7405-ENG-82, Office of Basic Energy Sciences, Materials Sciences, 1986.
- 10. Jacobson, R. A. <u>J. Appl. Crystallogr.</u> 1976, <u>9</u>, 115.
- 11. Main, R.: Lessinger, L.; Woolfson, M. M.; Germain, G.; Declerq, J. P. "A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data"; University of York: York, England, 1976.
- 12. Lapp, R. L.; Jacobson, R. A. "Alls: A Generalized Crystallographic Least Squares Program", U.S. DOE Report, IS-4708; Iowa State University: Ames, IA, 1979.
- 13. Powell, D. R.; Jacobson, R. A. "Four: A Generalized Crystalloghraphic Fourier Program", U.S. DOE Report,

.

.

- 13. Powell, D. R.; Jacobson, R. A. "Four: A Generalized Crystalloghraphic Fourier Program", U.S. DOE Report, IS-4737; Iowa State University: Ames, IA, 1979.
- 14. a. Hydrogen scattering factors were taken from: Stewart, R. F.; Davidson, E. R.; Simpson, W. T. J. <u>Chem. Phys.</u> 1965, <u>42</u>, 3175. Atomic scattering factors were obtained from: Cromer, D. T.; Webver, F. T. "International Tables for X-ray Crystallography"; Kynoch Press: Birmingham, England, 1974, <u>IV</u>, Table 2.2a, 71-79.

b. Flippen-Anderson, J. L.; Gilardi, R.; Konnert, J.
H. "Restrained Least-Squares Program (RESLSQ)", NRL
Memorandum Report, 5042; Naval Research Laboratory:
Washington, D.C., 1983.

- 15. Real and imaginary corrections for anomalous dispersion of the palladium, chlorine, phosphorus, and sulfur atoms were obtained from: Stewart, R. F.; Davidson, E. R.; Simpson, W. T.<u>J. Chem. Phys.</u> 1965, <u>42</u>, 149-150.
- 16. Szmant, H.; Cox, O. J. Org. Chem. 1966, <u>31</u>, 1595.
- 17. Olah, G. A.; BalaramGupta, B. G.; Narang, S. C. <u>Synthesis</u> 1978, 137.
- 18. Khan, M. M. T.; Siddiqui, M. R. H.; Hussain, A.; Moiz, M. A. <u>Inorg. Chem.</u> 1986, <u>25</u>, 2765.
- 19. Amonoo-Neizer, E. H.; Ray, S. K.; Shaw, R. A.; Smith, B. C. <u>J. Chem. Soc.</u> 1963, 4296.
- 20. Johnson, C. K. "Ortep", Report ORNL-3794; Oak Ridge National Laboratory: Oak Ridge, TN, 1965.
- 21. a. Oramo, O.; Karhu, M.; Nasakkala, M. N.; Sundberg, M.; Uggla, R. <u>Crystallogr. Struct. Comm.</u> 1979, <u>8</u>, 409.
 b. Issleib, K. <u>Z. Chem.</u> 1984, <u>24</u>, 378.
- 22. Bertrand, J. A.; Inorg. Chem. 1976, 15, 2965.

23. Cotton, F. A.; Wilkinson, G. "Advanced Inorganic Chemistry" 4th ed., John Wiley & Sons: New York, 1980 p. 290.

- 24. a. Steffan, W. L.; Palenik, G. J. <u>Inorg. Chem.</u> 1976, <u>15</u>, 2432. b. Mathew, M.; Palenik, G. J.; Steffan, W. L.; Beran, G. <u>J. Chem. Soc.</u>, <u>Sect. A</u> 1970, 1059.
- 25. Appleton, T. G.; Clark, H. C.; Manzer, L. E. <u>Coord.</u> <u>Chem. Rev.</u> 1973, <u>10</u>, 335.
- 26. a. Harris, R. K.; Mann, B. E, ed.s "NMR and the Periodic Table" Academic Press: New York 1978.
 b. Rutar, V., Instrument Services, Department of Chemistry, Iowa State University, private communication.
- 27. a. Hartley, F. R.; Davies, J. A.; Murray, S. G. <u>J. Chem.Soc. Dalton Trans.</u> 1980, 2246.
 b. Hartley, F. R.; Clark, H. C.; Manzer, L. E. <u>J. Chem.Soc. Dalton Trans.</u> 1979, 1705.
- 28. Wayland, B. B.; Schramm, R. F. <u>Inorg. Chem.</u> 1969, <u>8</u>, 971.
- 29. a. Thomas, S.; Reynolds, W. L. <u>Inorg. Chem.</u> 1969, <u>8</u>, 1531. b. Kitching, W.; Moore, C. J.; Doddrell, D. <u>Inorg. Chem.</u> 1970, <u>9</u>, 541.
- 30. Engelhardt, L.M.; Patrick, J. M.; Raston, C. L.; Twiss, P.; White, A. H. <u>Aust. J. Chem.</u> 1984, <u>37</u>, 2193.
- 31. Groth, P. <u>Acta Chem. Scand.</u> 1970, <u>24</u>, 2785.

. . . .

32. a. Davies, J. A.; Hartley, F. R.; Murray, S. G. <u>Inorg.Chem.</u> 1980, <u>19</u>, 2229. b. Angelici, R. J. "Synthesis and Technique in Inorganic Chemistry" 2nd ed., W. B. Saunders Co.:Philadelphia, 1977.

SECTION II. REACTION OF HALIDES WITH A STERICALLY HINDERED TETRAPHOSPHINE Pd(II) COMPLEX

•

.

•

• -----

.

.

•

المعدد السباب معموني والعو

INTRODUCTION

Five-coordinate complexes of the divalent Group 10 metals have long been proposed intermediates in substitution reactions and catalytic mechanisms.^{1,2} While several examples of five-coordinate Ni(II) are known, relatively few examples of well-defined five-coordinate complexes of Pd(II) and Pt(II) can be found in the literature.^{2,3} Pd(II) complexes of the tetradentate ligand 1 (Figure 1) have been reported in which a molecule of solvent (DMSO or CH₃CN) is coordinated to the metal to produce five-coordinate species, [(solvent)Pd(1)](AsF₆)₂ (2).¹ In these complexes solvent coordination was determined from ¹³C NMR and IR data. However, there was some ambiguity as to the nature of the interaction because of the small coordination chemical shifts.

Figure 1. Proposed structure of $[(DMSO)Pd(1)]^{2+}$

Complex 2 is soluble in DMSO and CH_3CN , thus limiting the use of variable temperature NMR as a tool to investigate the system.

We have expanded this work to include five coordinate complexes of the formula [XPd(1)]X by displacing coordinated DMSO with halides. Based on the affinity of Pd(II) for halides, they should readily displace coordinated DMSO or CH₃CN.⁴ However, in complex 2 there are eight phenyl rings surrounding the metal creating a protective cavity which may inhibit halide coordination. By studying the extent of coordination of the halide series we intended to probe the space that is available for coordination of a fifth ligand.

EXPERIMENTAL

General Procedures

All reactions were carried out under an inert atmosphere using solvents that were distilled from an appropriate drying agent under N₂ or Ar prior to use. Reagents were used without further purification unless otherwise noted. $[(DMSO)Pd(1)](AsF_6)_2$ (2), $[(CH_3CN)Pd(1)](AsF_6)_2$ (3), and $[(DMSO)Pd(1)]Cl_2$ (4) were prepared as previously reported.³

Solution ³¹P NMR spectra were taken on a Bruker WM-300, or a Bruker WM-200 spectrometer operating in the Fourier mode. Chemical shifts were referenced to an external 85% H₃PO₄ standard, and downfield shifts are given as positive values. Solution ¹H NMR spectra were taken on a Nicolet NT-300 spectrometer operating in the Fourier mode and were referenced to internal TMS.

Mid-infrared (4000 to 400 cm⁻¹) and far-infrared (600 to 150 cm⁻¹) spectra were taken on an IBM Fourier IR/98 spectrometer. Mid-IR range samples were prepared as KBr pellets or Nujol mulls on KBr plates; far-IR range samples were prepared as Nujol mulls on polyethylene plates.

Conductances were measured with a Markson ElectroMark Analyzer on solutions that were approximately 10^{-3} molar.

Reactions of $[(DMSO)Pd(1)][BF_4]_2$ with X⁻

For X = F, Cl, Br, I, approximately 30 mg of 2 in 2 mL 50/50 (v/v) CHCl₃/DMSO was placed in a 10 mm NMR tube. The addition of DMSO was required to completely dissolve 2. Various amounts of Bu₄NF, Bu₄NCl, Bu₄NBr or Et₄NI were added and the reactions monitored by 31 P NMR.

X = F, C1

For X = F, Cl an equilibrium was established. The spectra were taken at 10 to 20 minute intervals until equilibrium was reached as signified by no further changes in consecutive spectra. The relative amounts of the species in solution were determined by peak integration of the ³¹P NMR spectrum.

X = Br

When Bu4NBr was added to a solution of 2, a greyish precipitate formed immediately that was insoluble in organic solvents. The ³¹P spectrum of the solution showed the presence of uncoordinated 1 (δ -22.0).

X = I in DMSO

 $[Pd(1)][AsF_6]_2$ (0.0610 g, 0.467 mmol) was reacted with 0.240 g (0.934 mmol) Et₄NI in 20 mL of DMSO. The color immediately changed from pale yellow to a deep orange upon addition of iodide and remained homogeneous. Separation from Et₄NAsF₆ was achieved by chromatography using Fluorosil as the adsorbent and acetone as the eluent. Addition of ether followed by cooling precipitated 0.031 g of I₂Pd(Ph₂PCH₂)₂(CH)₂-(CH₂P(O)Ph₂)₂ (7). (¹H NMR (CDCl₃): δ7.94 (8H, m, PhPO-ortho), 7.77 (8H, m, PhPO-meta), 7.59 (4H, m, PhPO-para), 7.1-7.5 (22H, m, PhPPd), 2.74 (5H, m, CH₂PO), 2.12 (7H, m, CH₂P-Pd, CH))

X = I in CH₃CN

Reaction of 3 (0.1096 g, 0.0811 mmol) with 0.0417 g (0.572 mmol) Et₄NI in CH₃CN yielded two products. Separation from Et₄NAsF₆ was achieved by chromatography as in the previous reaction. Deep red needle crystals (8), and orange hexagonal prismatic crystals (9) were separated by repeated fractional crystallization from CH₃CN. (mp (8) 191 dec.) (mp (9) 226-232 dec.) (¹H NMR (8) (DMSO): δ 7.64-7.29 (42H, m, Ph & CDCl₃), 2.66 (4H, m, CH₂), 2.34 (6H, m, CH₂, CH)) (¹H NMR (9) (DMSO): δ 7.71- 7.34 (40H, m, Ph), 2.69 (4H, m, CH₂), 2.48 (6H, m, CH₂, CH))

RESULTS

Reaction with Cl⁻

Complex 4 is prepared in DMSO and gives a single 31 P resonance at 30.8 ppm (Table I). In DMSO, the conductivity is consistent with a two-to-one electrolyte, and no absorptions were observed in the IR spectrum that could be assigned to v_{Pd-C1} .² When 4 was dissolved in solvents less polar than DMSO, a second chemical shift was observed in the 31 P NMR spectrum at 20.4 ppm. Addition of AgAsF₆ to this mixture removed chloride from solution and again a single peak corresponding to 2 at +30.9 ppm is seen in the ³¹P spectrum. Conversely, beginning with the dication 2, addition of two mole equivalents of Bu4NCl to a 50/50 DMSO/CHCl3 solution caused the appearance of the +20.4 resonance. When the equilibrium mixture was isolated from solution and redissolved in DMSO, it reverted completely to 4 over a period of days (Scheme 1). The +20.4 ppm resonance was assigned to the five-coordinate complex in which one of the chloride atoms is bound to the palladium, [ClPd(1)]Cl (5). Although evidence for the Cl⁻ coordinated complex 5 was found in solution, it could not be isolated due to an equilibrium with the DMSO coordinated complex 4. The coordination of Cl⁻ to Pd was verified by the presence of a medium-intensity νP_{d-C1} mode in the infrared spectrum at 299 cm⁻¹ (Table I).

-- - ·

.

No absorption was observed between 150 to 400 cm⁻¹ that could be assigned to p_{d-C1} for complexes 2, 3, or 4.

Conductance measurements are consistent with the formation of a five coordinate complex. In DMSO, $[Pd(1)]Cl_2$ gives a conductance measurement that corresponds to a two-to-one electrolyte, $\Lambda_m = 42.1 \text{ cm}^2 \text{mol}^{-1} \Omega^{-1}$. The same compound in ethanol, has a conductance of 57.7 cm²mol⁻¹ Ω^{-1} , which is midway between the expected values for a one to one (35 - 45) and a two to one electrolyte (70 - 90).⁴ DMSO and CH₃CN solutions in which the chloride anions had been removed to give complexes 2 or 3 gave conductance measurements indicative of two to one ionic systems (Table I).

Mole ratios of 5 to 4, based on the integration of the corresponding resonances in the ³¹P NMR spectrum, were determined as a function of solvent polarity and temperature (Tables II and III). There appears to be a correlation between solvent polarity and the amount of the Cl⁻ coordinated complex present in solution. The ratio of complexes 4 to 5 in solution increases to a limit with the polarity of the solvent. Of the solvents employed, chloroform has the lowest dielectric constant (least polar). In chloroform the ratio of 4 to 5 remained high, with a one to one ratio, thus eliminating the possibility of isolating complex 5 from 4. More polar solvents may be

better able to support the dication 4. As the polarity decreases, the monocation 5 becomes favored. However this explanation is too simplistic and what is observed experimentally is undoubtedly the combination of solvent polarity, the relative coordinating ability of DMSO and Cl⁻, and the steric properties of the ligated metal. Since the starting complex 4 has a molecule of DMSO coordinated, the observed equilibrium is perhaps a combination of equilibria between two five-coordinate complexes in which DMSO or Cl⁻ are bonded to Pd and an intermediate in which the metal is four-coordinate (Scheme 2).

 $[(DMSO)Pd(1)]C1_2 \longrightarrow [Pd(1)]C1_2 \longrightarrow [C1Pd(1)]C1$

Scheme 2.

At higher temperatures, the coordination of chloride is slightly favored over DMSO (Table II). In chloroform at 40C, formation of 5 is favored giving a ratio of almost two to one relative to 4. It is not clear why the coordination of Cl⁻ is favored at higher temperatures. It may be that increased freedom within the phenyl rings of the ligand allows the larger Cl⁻ to gain closer proximity to the Pd atom. It has been shown that the DMSO coordinates to Pd

via the O atom which has a smaller radius than the $C1^{-}$.² The Cl is a softer base, however, and is known to displace O donor ligands.⁴

Reaction with F⁻

Based on the ³¹P NMR data, addition of n-Bu₄NF to 2 produced the fluoride analogue to 5, [FPd(1)](AsF₆) (6). A four-fold excess of F^- was required to produce the second resonance at 19.8 ppm, and no coupling between phosphorus and fluorine was observed. The absence of coupling could be due to fast exchange on the NMR time scale. Low temperature ³¹P NMR was limited to the melting point of the solvent (-47 ° C), however at - 45 no coupling to F was observed. Solid state ³¹P NMR was not useful because line widths are typically 100 Hz and the expected coupling of 30 to 40 Hz for F <u>cis</u> to P would not be detected.⁵

Reaction with I⁻ in DMSO

Addition of iodide to a solution of 2 in a 50/50 (v/v) DMSO/CDCl₃ solvent mixture resulted in the displacement of two arms of the ligand which were then oxidized by the DMSO to form complex 7. Two resonances were seen in the ³¹P NMR spectrum at 31.6 ppm corresponding to the oxidized phosphine and 10.7 ppm corresponding to the phosphine bonded to the palladium. The v_{P-O} appeared at 1184 cm⁻¹, but the v_{Pd-I} was not observed in the expected region (150 - 400 cm⁻¹). The identification of this product was based on the ¹H, ³¹P NMR and the IR spectra in comparison to the chloride analogue Cl₂Pd(PPh₂CH₂)₂C₂H₂(CH₂P(0)Ph₂)₂ (10) which has been structurally characterized.⁶ ¹H NMR has been particularly useful in distinguishing between complexes in which all four phosphines are bound to the metal, and those which have two phosphines bound, and the remaining two oxidized and uncoordinated. The ortho hydrogens of the oxidized ligand, [Ph₂P(0)CH₂)₂CH]₂ appear characteristically downfield as two ABX quartets at 7.9 and 7.7 ppm.⁶ The inequivalency arises from hydrogen bonding of the phosphoryl oxygens.

The phenyl region in the ¹H NMR of complex 10 clearly shows two ABX quartets at 7.86 and 7.65 ppm, and the remainder of the phenyl hydrogens appear upfield as a complicated multiplet centered at 7.39 ppm. The phenyl region of complex 7 is very similar, with two broadened multiplets at 7.90 and 7.60 ppm and the remainder of the phenyl hydrogens as a multiplet centered at 7.3 ppm.

Reaction with I in CH3CN

When the reaction of 2 with I⁻ is done in CH_3CN , two products (8 and 9) were isolated. Both give a single resonance in the ³¹P NMR indicating the equivalence of the

four P atoms. During the course of the reaction between 4 and I⁻, the resonances for complexes 8 and 9 in the 31 P NMR grew in, as well as a peak at -22 ppm correspondng to free ligand which was oxidized over ca. 16 h in air to give the phosphine tetraoxide. The resonances for 8 and 9 are well outside the range for oxidized ligand (37.6 ppm), In the far-IR spectra, neither 8 nor 9 have absorptions that could be assigned to $v p_{d-1}$. This is not a definitive indication of the absence of a Pd-I bond because the weak absorptions of M-I are not always observed. Compounds 8 and 9 are very soluble in organic solvents and were separated by fractional crystallization from a mixture of CH3CN and CHCl3. Compound 8 crystallized as dark red needles which were too thin to diffract sufficiently for X-ray analysis. Compound 9 crystallized as bright orange hexagonal prisms. The crystallographic analysis of this compound is currently in progress.

DISCUSSION

Platinum and palladium complexes of the formula $[M(bidentate)_2]X_2$ are analogous to complex 4. $[Pd(dppe)_2]Cl_2$, $Pt(dppe)_2Cl_2$, and $[Pd(pMepe)_2]Cl_2$ have been structurally characterized.⁷ In all complexes, the solid state structures are four-coordinate square planar. Grossel et al.⁸ has recently studied the solution chemistry of $[Pt(dppm)_2]X_2$ and determined each member of the series for $X = Cl^-$, Br^- , I^- to be five-coodinate. He proposes an equilibrium reaction between the four-coordinate and five-coordinate complexes as shown in Scheme 3.

Unlike the equilibria observed between four and fivecoordination in complex 4, the same equilibria in [Pt(dppm)₂]X₂ lie far to the side of the five-coordinate complexes. The ³¹P NMR chemical shifts of the fourcoordinate and five-coordinate complexes showed an upfield shift upon coordination of X to the fifth position. When X - Cl⁻, the phosphorus resonance shifts 6.2 ppm upfield. On coordination of Cl⁻ to 2, an upfield change of 10.7 ppm is observed. They also note a slight (0.1 ppm) downfield shift of the ³¹P NMR resonance of [Pt(dppm)₂]²⁺ in CH₃CN relative to CH₂Cl₂, and suggest a separate equilibrium between [(CH₃CN)Pd(dppm)₂]⁺ and [ClPd(dppm)]⁺ in which CH₃CN does not displace the phosphine but plays a part in the equilibria.

In the reactions between halides and 4, only Cl⁻ and F⁻ were found to form five-coordinate complexes, but neither could be isolated from their equilibrium partners. Since halides readily displace coordinated solvents in similar systems,^{2,8} the reason for the limited halide coordination in 4 must lie with the steric constraint of the ligand. The relative steric constraints placed on the two compounds by the phosphine ligands has been discussed.³ It has been shown that DMSO coordinates through the small O atom, and displacement by the larger Cl⁻ may be inhibited by the steric restrictions of the ligand. Although the F⁻

is much smaller in radius, now the controlling factor is probably electronic. Fluoride is a hard base, which only coordinates very weakly to soft metals such as Pd and Pt.¹

When I⁻ was added to 2, displacement of two arms of the phosphine resulted, allowing coordination of I⁻ to the Pd. This suggests that the much larger radius of I⁻ relative to Cl⁻ prevents it from forming a five-coordinate complex.

Both complexes 8 and 9 are non-conducting in DMSO (Table I). The presence of a single resonance in the ³¹p NMR spectrum for these compounds at 16.0 ppm for 8 and 17.1 ppm for 9, indicates an equivalency of all four phosphine arms. The deep colors, which are in contrast to the pale yellow of the starting complex 2, suggests coordination of iodide. To account for this data,formation of an oligomeric or six coordinate complex, or extensive rearrangement must be considered. It does not seem likely that 8 and 9 are oligomeric because of their crystalline nature. Ligand 1 creates a very protected, sterically crowded cavity for the Pd, and six coordination appears difficult, suggesting rearrangement of the tetraphosphine, which is substantiated by the loss of phosphine during the reaction.

On the basis of these results, it would seem that the fifth coordination site on 2 is sterically restrained by
the ligand 1. Coordination of chloride in an equilibrium reaction indicates that its radius is nearing the limit allowed by the phosphine ligand. Coordination of DMSO and CH₃CN suggests possible coordination of other small molecules that have small donor atoms to occupy the relatively small volume available.

.

TABLES

co	mpound	δ ³¹ P	∨Pd-C1
1	((Ph2PCH2)2CH)2	- 22.0	
2	[(DMSO)Pd(1)](AsF ₆) ₂	30.9	*p
3	[(CH ₃ CN)Pd(1)](AsF ₆) ₂	31.0	*
4	[(DMSO)Pd(1)]Cl ₂	30.8	*
5	[C1Pd(1)]C1	20.1	299 m, br ^c
6	[FPd(1)]AsF ₆	19.8	*
7	I ₂ Pd((Ph ₂ PCH ₂) ₂ C ₂ H ₂ - (CH ₂ P(O)Ph ₂) ₂)	8.1 ^d 31.6	*
8	$I_2Pd(1)$	16.0	*
9	$I_2Pd(1)$	17.1	*

Table I. $31_{P(1H)}$ NMR, Infrared and Conductance measurements

^aAcceptable ranges for 1:1 and 2:1 electrolyte in DMSO are 20-40, and 45-90, respectively. In CH₃CN, acceptable ranges are 120-140 for 1:1 and 190-240 for 2:1.⁹

^bThe IR spectrum was taken in the expected region; no absorption was observed.

^cThis value is for an equilibrium mixture of 4 and 5. ^dThe downfield resonance at +31.6 ppm corresponds to the oxidized phosphine.

ν _{P-O} (cm ⁻¹)	$\Lambda_{M} \text{ cm}^2 \text{mol}^{-1} \text{ohm}^{-1} (\text{solvent})^a$
-	-
-	
-	195 (CH ₃ CN)
•	42.1 (DMSO)
	57.7 (EtOH)
-	-
1188	0.56
	0.19
-	0.21

	4 : 5	solvent
	1 : 1	CDCl ₃
1	1.4 : 1	CD ₂ Cl ₂
1	1.5 : 1	MeOH, EtOH
2	2.1 : 1	CH ₃ CN
c	only 4	DMSO
		میں ہے جب خن کا ایر جر جر نے خن کا تک _{اور} جر جر نے کا کا و

Table II. Mole ratio of 4 to 5 as a function of solvent

.

Table	III.	1	Mole ratio temperature	of 4 to 5 as a function of e in CDCl3
	4	:	5	temperature(C)
	1	:	1 ·	- 2
	1	:	1.4	32
	1	:	1.7	40

REFERENCES

- a. Hartley, F. R. "The Chemistry of Platinum and Palladium"; Applied Science Publishers: London, 1973. b. Pignolet, L. H., ed. "Homogeneous Catalysis with Metal Phosphine Complexes" Plenum Press: New York, 1983. c. Roberts, T. L.; Wild, S. B. Inorg. Chem., 1981, 20, 1900.
- a. Blundell, T. L.; Powell, M. H. <u>J. Chem. Soc., Sect.</u> <u>A</u> 1967, 1650. b. Collier, J. W.; Mann, F. G.; Watson, D. G.; Watson, H. R. <u>J. Chem. Soc.</u> 1964, 1803.
- 3. Duff, C. M. "Coordination Chemistry of a New Tetradentate Phosphine With Group 10 Metals" Ph.D. dissertation, Chemistry Dept. Iowa State University, Ames, IA, Section II., 1987.
- Ducommun, Y.; Merbach, A. E.; Hellquist, B.; Elding, L. I. <u>Inorg. Chem.</u> 1987, <u>28</u>, 1759.
- 5. Angelici, R. J. "Synthesis and Technique in Inorganc Chemistry" W.B.Saunders Co.:Philadelphia, 1977
- 6. Cairns, M. A.; Dixon, K. R. ; McFarlane, J. J. J. Chem. Soc. Dalton Trans. 1975, 1159.
- 7. a. Engelhardt, L. M.; Patrick, J. M.; Raston, C. L.; Twiss, P.; White, A. H. <u>Aust. J. Chem.</u> 1984, <u>37</u>, 2193.
 b. Groth, P. <u>Acta Chem. Scand.</u> 1970, <u>24</u>, 2785.
- Grossel, M. C.; Moulding, R. P.; Seddon, K. R.; Walker, F. J. <u>J. Chem. Soc. Dalton Trans.</u> 1987, 705.
- 9. a. Bailey, N. A.; Mason, R. <u>J. Chem. Soc. Sect. A</u> 1968, 2594.
 b. Jenkins, J. M.; Shaw, B. L. <u>J. Chem. Soc. Sect. A</u> 1966,770.

SECTION III. OXIDATION OF DIMETHYLSULFOXIDE TO DIMETHYLSULFONE BY A Pd(II) TETRAPHOSPHINE COMPLEX

INTRODUCTION

Recently we reported the preparation and characterization of a Pd(II) complex of the new tetradentate phosphine 1 (Figure 1).¹ In the process of investigating the chemistry of $[(DMSO)Pd(1)](BF_4)_2$ (2), it was discovered that DMSO solutions of 2 left open to air catalytically oxidize DMSO to dimethylsulfone (DMSO₂).

Pd(II) salts and complexes are well known to catalyze numerous organic syntheses. These include alkyl and aryl coupling reactions, carbonylation of organic substrates, the oxidation of olefins in the Wacker process and the oxidation of organic substrates through palladium dioxygen species.^{2,3} However, in each of these catalytic systems, the Pd cycles between oxidation states (0) and (II) which seemed improbable for DMSO solutions of 2. To clarify the oxidative ability of 2 towards DMSO, the catalysis has been repeated under controlled conditions and compared with the reactivity of analogous Pd(II) complexes of mono- and diphosphine ligands.

Figure 1. Proposed structure of $[(DMSO)Pd(1)](Z)_2$; 2 Z = BF₄⁻; 3 Z = C1⁻

EXPERIMENTAL

General Procedures

Preparative reactions were carried out under an inert atmosphere using solvents that were distilled from appropriate drying agent under N₂ or Ar prior to use. Reagents were used without further purification unless otherwise noted. [(DMSO)Pd(1)](BF4)₂ (2), [(DMSO)Pd(1)]Cl₂ (3), (PdCl₂)₂(1) (5),¹ [Pd(dppe)₂](BF4)₂ (6),⁴ and Pd(Ph₂MeP)₄](BF₄)₂ (7)⁵ were prepared as previously reported.¹

Solution ³¹P NMR spectra were taken on a Bruker WM-300, or a Bruker WM-200 spectrometer operating in the Fourier mode. Chemical shifts were referenced to an external 85% H₃PO₄ standard. Positive values are downfield of the standard. Solution ¹H and ¹³C NMR spectra were taken on a Nicolet NT-300 spectrometer operating in the Fourier mode. Both were referenced to internal TMS.

Mid-infrared (4000 to 400 cm⁻¹) and far-infrared (600 to 150 cm⁻¹) spectra were taken on an IBM Fourier IR/98 spectrometer. Mid-IR range samples were prepared as KBr pellets or Nujol mulls on KBr plates; far-IR range samples were prepared as Nujol mulls on polyethylene plates.

Conductance measurements were made with a Markson ElectroMark Analyzer on solutions that were approximately 10^{-3} molar.

Oxidation of DMSO to DMSO₂

Reactions of Pd complexes with DMSO

Approximately 30 mg of each of the Pd complexes 2, 3, 5, 6 and 7 was dissolved in 2.5 ml DMSO and the solution stirred for three weeks while open to air. The DMSO was dried over CaH₂ and distilled under partial vacuum. Ligand 1 in DMSO and a flask containing only DMSO were stirred in air for three weeks as controls.

Isolation of dimethylsulfone

At the end of the allotted reaction time, the 31 P NMR spectrum of the reaction solution was taken to determine the fate of the Pd complex. Water (10 mL) was then added and the dimethylsulfone extracted from the solution with three 5 mL portions of CHCl3. The organic phases were combined, dried over anhydrous Na₂SO₄ and evaporated to dryness using a rotary evaporator. The crude product was weighed, then sublimed at 145 °C under an inert atmosphere before characterization. (m.p. 106 - 109°; lit. m.p. 108-110°)^{6a} (¹H NMR (CD₃CN): δ 2.90 (s); lit. 2.91 (s))^{6b} (¹³C NMR (CD₃CN): δ 42.82)

Ligand 1

Stirring ligand 1 (0.0091 g, 1.1×10^{-2} mmol) in 2.5 mL DMSO and 75 µL water caused partial oxidation of 1 over the three week reaction period. The odor of Me₂S was detected over the reaction mixture and the presence of the phosphine

oxide, $[Ph_2P(0)CH_2)_2]_2$ (8), was identified by ³¹P NMR (+37.6 ppm).¹ Oxidation of 1 to 8 by DMSO has been reported to occur under sonication or long reaction times.¹ $\frac{f(DMSO)Pd(1)f(BF_4)_2}{2}$ (2)

Complex 2 (0.269 g (0.227 mmol)) stirred in 3 mL DMSO with 75 μ L water, in air for three weeks yielded 0.127 g (1.35 mmol) DMSO₂. In a repeat experiment, 0.056 g of 2 (4.7x10⁻² mmol) yielded 0.024 g DMSO₂ (0.26 mmol).

In the absence of water, 0.0562 g of 2 in DMSO for three weeks provided trace amounts of $DMSO_2$ detected by ¹H NMR that were not isolated.

The oxidation of DMSO was performed in the presence of 18_0 labelled water (>1.5%). Complex 2 (0.0034 g, 2.9x10⁻³ mmol) was stirred in 2.5 mL DMSO with 100 L 18_{0H_2} for three weeks. DMSO₂ (0.0017 g, $1.7x10^{-2}$ mmol) was isolated from the reaction, purified by sublimation and submitted for exact mass spectral analysis to determine the extent of incorporation of 18_0 . A control reaction was included in which 0.0015 g DMSO₂ was stirred in 2.5 mL DMSO with 100 µL 18_{0H_2} for the same time period, the DMSO isolated, and submitted for mass spectral analysis. The resultant percentage incorporation of 18_0 was: $4.90\% \pm 0.03$ when no 18_0 was present, 4.92% 0.03 when DMSO₂ was stirred irom the resultant percentage incorporation of 18_0 was present, 4.92% 0.03 when the DMSO₂ resulted from the oxidation of DMSO in the presence of $\frac{18}{18}$ OH₂.

Addition of 0.0035 g (6.0×10^{-2} mmol) NaCl to 0.0328 g (2.71×10^{-2} mmol) of 2 in 2.5 mL DMSO and 75 µL water produced a trace amount of DMSO₂ detected by ¹H NMR, which was not isolated.

$[(DMSO)Pd(1)]Cl_2 (3)$

A DMSO solution of complex 3 loosely capped and set aside in air for ca. 1.5 year reacted to produce a detectable amount of DMSO₂. Unreacted 3 remained in solution while 0.0160 g (1.55x10⁻² mmol) of $Cl_2Pd((Ph_2PCH_2)_2C_2H_2(P(0)Ph_2)_2)$ (4) crystallized and was structurally characterized. (¹H NMR (4) (CDCl_3): δ 7.86 (6H, m, Ph); 7.65 (12H, m, Ph); 7.2 - 7.5 (35H, m, Ph + CHCl_3); 2.32 (4H, complicated m, CH₂); 2.09 (6H, m, CH₂ + CH)) (¹³C NMR (CDCl_3): δ 148.4 (m, Ph-P(O) ipso); 133.1 (m, Ph-PPd ipso); 131.7 (m, Ph); 130.9 (m, Ph); 130.5 (m, Ph); 128.5 (m, Ph); 126.6 (m, Ph); CH₂ and CH not observed).

Repetition of the reaction over three weeks in the presence of H_2O yielded no detectable DMSO₂.

$(PdCl_2)_2(1)$ (5)

Stirring 0.0299 g (2.54x10⁻² mmol) 5 in 2.5 mL DMSO and 75 μ L water for three weeks yielded no detectable DMSO₂.

[Pd(Ph2MeP)4](BF4)2 (6)

DMSO was not detectably oxidized to DMSO₂ by 0.0199 g $(2.57 \times 10^{-2} \text{ mmol})$ of 6 in 2.5 mL DMSO and 75 μ L water after

three weeks.

$[Pd(dppe)_2](BF_4)_2$ (7)

Complex 7 crystallized from a solution of 0.0987 g (9.17x10⁻² mmol) 7 in 2.5 mL DMSO and 75 $_{\mu}L$ water over three weeks and DMSO₂ was not detected.

X-ray Crystallographic Procedures for 4⁷ Data Collection and Reduction

A pale yellow pinacoidal crystal of approximate dimensions 0.20 x 0.20 x 0.60 mm was mounted on a glass fiber in a random orientation. Cell constants and an orientation matrix for data collection were obtained from least-squares refinement, using the setting angles of 25 reflections in the range $22 < 2\theta < 34$. The data were collected using the θ - 20 technique.

A total of 7783 reflections were collected, of which 3896 were unique and not systematically absent. As a check on crystal and electron stability, three representative reflections were measured every 60 min. No significant loss of intensity was observed throughout the data collection, so no decay correction was applied. Lorentz and polarization corrections were applied to the data. The linear absorption coefficient is 6.2 cm^{-1} for MoK_{α} radiation. An empirical absorption correction, based on a series of psi-scans, was applied to the data. Relative transmission coefficients ranged from 0.965 to 0.999 with an average value of 0.987. Intensities of equivalent reflections were averaged. The agreement factors for the averaging of the 3896 observed and accepted reflections was 2.0% based on intensity and 1.7% based on F_0 . Table I contains a tabulation of the pertinent information relevant to data collection and reduction.

Structure Solution and Refinement

The position of the Pd atom was given by a Patterson interpretation method.⁸ The remainder of the non-hydrogen atoms were located from subsequent difference-Fourier and least-squares refinement cycles. Following least-squares refinement of all of the non-hydrogen atoms in the Pd complex, the oxygen atom of a water molecule and a partially disordered molecule of DMSO were located in the lattice. The DMSO molecule was disordered such that the oxygen atom and the two methyl groups defined a plane, on either side of which were located half-occupancy atoms. The total occupancy of the solvent molecule refined to a value of 0.88.

The parameters thus defined were refined in full-matrix least-squares calculations. Scattering factors were taken from Cromer and Waber.⁹ Anomalous dispersion effects were included in F_c ;⁹ the values for f' and f" were those of Cromer.9 Only those reflections having

intensities greater than 3.0 times their standard deviation . were used in the refinements.

Analysis of residual electron density on an electron density difference map (maximum - $2.2e/Å^3$, located 0.23 from Pd) indicated all atoms were accounted for by the model.

RESULTS

The production of $DMSO_2$ by the oxidation of DMSO in the presence of Pd(II) complexes is summarized in Table II. The control reactions in which the uncoordinated ligand 1was stirred in DMSO and a blank in which no other substance was added to the DMSO/H2O solution gave no oxidized product. In fact the solution of 1 resulted in a reduction of DMSO to DMS and the oxidation of the phosphine to $[(Ph_2P(0)CH_2)_2CH]_2$ (8). The oxidation of 1 by DMSO has been reported by us, and occurs either in the presence or absence of air.¹ The oxidized phosphine 8 was easily identified by the downfield shift in the ³¹P NMR spectrum (37.5 ppm) relative to -22.0 ppm for 1 (Table III). The oxidation was not complete, and in the region of 36 to 38 ppm, several signals were observed, in addition to signals in the -15 to -22 ppm region.

In the presence of complex 2, air, and water, more than 5 equivalents of DMSO is oxidized relative to the initial amount of 2, and in the strict absence of H_2O , no oxidation was detected. If this observation were due to a stoichiometric reaction in which DMSO and the phosphine ligand were simultaneously oxidized, the maximum mole ratio of DMSO₂ to starting Pd complex would be 4. In order to verify that this system is catalytic and gain insight into the reaction, the fate of the Pd complex must be

considered. ³¹P NMR spectrometry was used to identify the Pd complexes once the oxidation reactions were ended. The ³¹P NMR spectral data and infrared data for the starting materials are given in Table III.

In each of the reactions involving complex 2, the composition of the Pd complexes in solution was altered. The starting complex 2 gives a single resonance at 30.8 ppm. The spectra at the end of each oxidation reaction showed a much more complex mixture. In one example, resonances (with relative peak areas in parentheses) were observed at 40.2 ppm (1P), 38.0 ppm (1.5P), 31.7 ppm (2.4P), and 20.0 ppm (2.5P), but the major peak remained at 30.9 ppm (8.2P). In subsequent runs involving 2, the same general pattern was observed in the final ³¹P NMR spectra.

When the BF_4 anion in 2 is replaced with a coordinating anion, as in complex 3, only a trace amount of DMSO₂ was detected after three weeks. When the reaction was allowed to proceed for 1.5 years, two moles of DMSO₂ was isolated for each mole of complex 4 that was recovered from the solution. In this reaction, two of the phosphines were oxidized and displaced by the chlorides to give the final complex 4. Complex 4 crystallized from the reaction mixture, and after 1.5 year, unreacted 3 was still detected in solution over the crystals by ³¹P NMR. Numerous other peaks representing partially oxidized phosphine, and

complex 4 were also present. Repetition of the reaction with a three week reaction time yielded no detectable DMSO₂ and no detectable destruction of 3. Crystals of complex 4 were submitted for X-ray crystallographic analysis. The ORTEP diagram of 4 is shown in Figure 2, the heavy atoms and carbon skeleton are shown in Figure 3, and the unit cell is shown in Figure 4. Selected bond distances, bond angles and isotropic positional parameters are given in Tables IV, V, and VI, respectively. Anisotropic thermal parameters, hydrogen atom positions and structure factor tables can be found in Appendix III.

The dinuclear complex 5 and the tetraphosphine oxide of 1 have also been structurally characterized.¹ Since both 4 and 5 have the same $Cl_2Pd(Ph_2PCH_2)_2CH$ subunits, the bond angles and distances should compare favorably. The Pd atom in 4 is square planar with minor deviations from planarity. The Pd is 0.034(1) Å out of the P₂Cl₂ plane, and the sum of the bond angles about Pd is 360°. In complex 5, the Pd is nearly square planar with a deviation of 0.071 Å out of the P₂Cl₂ plane. The P-Pd-P bond angle at 94.6(1)°, is very close to the P-Pd-P angles in complex 5 (93.7(4) and 94.5(5)°. The Cl-Pd-Cl bond angles are

Figure 2. Complete ortep diagram of 4

Ì

ł

ı

.

1

Figure 4. Unit cell diagram of 4

ł

•

92.21(9)Å in 4, and 89.6(4) and 90.65(6)Å in 5. The Pd-Cl bond lengths are from 2.32(1) and 2.36(1)Å in 5, and 2.415(2) and 2.386(3)Å in 4.

The P-Pd bond lengths in 5 are between 2.23(1) and 2.26(1), and in 4 they are 2.243(3) and 2.229(3). The strain created by the formation of a six-membered chelate ring has already been discussed in relation to complex 5.¹ Comparing complexes 4 and 5, the increased freedom of the uncoordinated phosphine oxide arms appears to have decreased the strain caused by the adjacent chelate ring in 5 and thus decreased the distortion in the square plane around Pd in 4. There is no evidence for hydrogen bonding through the phosphoryl oxygen as was observed in the tetraphosphine oxide.

When two equivalents of Cl^- was added to 2 in DMSO/H₂O, the presence of the coordinating anion inhibited the oxidation of DMSO, and only a trace amount of DMSO₂ was detected in the ¹H NMR spectrum after three weeks.

The dipalladium complex 5 in which two chlorides are bound to the Pd atom, also did not produce any $DMSO_2$ over a three week period in DMSO and H_2O .

DISCUSSION

The catalysis of organic reactions by transition metals can be reduced to three basic steps: 1)oxidative addition to a reduced species, 2) insertion into a metal substrate bond, and 3) reductive elimination of the product. During this sequence Pd phosphine catalysts must be able to cycle between a reduced species and Pd(II). It is this ability to alternate between oxidation states that qualifies the Pd complex for catalytic activity. Additionally, the catalyst must be in a state of coordinative unsaturation allowing coordination of the substrate, or oxidative addition.

Catalytic oxidation of organic substrates by Pd is known to proceed through palladium hydroxide (Wacker process), palladium dioxygen compounds, and palladium nitro compounds.² Since nitrate is not present in DMSO solutions of 2, the latter oxidation process can be dismissed.

The Wacker process is the industrially important oxidation of olefins by $PdCl_2$. The catalysis requires the presence of H_2O to produce a Pd-OH or Pd-OH₂ species which is the active catalyst. Because of the importance of this process, it has been studied in detail. The mechanism for this oxidation is given in Scheme 1. The key step in this process is nuceophilic attack of OH⁻ or H_2O on the

Scheme 1. Wacker process for oxidation of olefins catalyzed by Pd

coordinated olefin. The role played by Pd involves increasing the electrophilic nature of the olefin by removing electron density from the pi orbitals upon coordination and thus increasing susceptibility towards nucleophilic attack.

In catalytic oxidation by dioxygen complexes, a

Scheme 2. Catalytic oxidation by palladium dioxygen phosphine complexes

reduced Pd phosphine complex such as $Pd(PPh_3)_4$ oxidatively adds molecular 0_2 <u>in situ</u> to give the active catalyst. The mechanism for this process is shown in Figure 2.

The oxidation of DMSO to $DMSO_2$ is catalyzed by 2, in which Pd is in the +2 oxidation state. The active catalyst therefore must be a Pd(II) species, or is the result of reduction in the reaction mixture to give Pd(O).

Consideration of Pd(II) as the active species in solution further leads to two possible mechanisms.

Coordination of DMSO to 2 in the solid state has been shown to occur through the O atom.¹ By induction of electron density, coordination should increase the electrophilic nature of the S of DMSO. However, direct nucleophilic attack of molecular oxygen on a substrate has not been reported. Nucleophilic attack by H_2O or OH^- as in the Wacker process is more reasonable.

The presence of water was found to be necessary for catalytic oxidation of DMSO by 2 and would appear to be consistent with the Wacker process for oxidation. However, the amount of water added to the DMSO solutions was less than the stoichiometric amount needed to produce the observed amounts of DMSO₂. In one such reaction, 4.2×10^{-6} mol H₂O was added to the reaction and 2.6×10^{-4} mol of DMSO₂ was obtained from the oxidation. Application of the Wacker process to catalytic oxidation by 2 presents the additional problem of how the resulting Pd(O) complex could be oxidized back to the active Pd(II) catalyst.

If a palladium dioxygen complex is the active catalyst, the question arises as to how the starting Pd(II) complex was reduced to Pd(O). Perhaps this question has already been answered in the discussion of Wacker-type chemistry in which Pd(II) is reduced to Pd(O) in the first cycle. An additional consideration is the reduction of Pd(II) by the phosphine ligand which would yield a three-

Scheme 3. Possible pathway for reduction of 2 by a phosphine arm

coordinate Pd(O) phosphine complex (Scheme 3). This could then oxidatively add O_2 to yield the active catalyst.

The addition of Cl⁻ inhibits the oxidation of DMSO by 2. The reduction in catalytic activity upon replacement of a non-coordinating with a coordinating anion indicates blockage of an active site on the Pd which leads to a catalytically dead Pd complex. As indicated by NMR studies, coordinated DMSO in complex 2 is displaced to a substantial extent (50%) by chloride in CHHCl₃ but is not displaced in DMSO solutions.¹ In DMSO, the dipalladium complex 5 reacts with an equivalent of the ligand 1 to form 2. Since free ligand 1 displaces Cl⁻ in DMSO solution, displacement of one or more of the phosphine arms of 1 by Cl⁻ to produce an inactive complex can be ruled out.

The fate of the Pd in the reaction of 3 with DMSO has been determined. When Cl⁻ is the anion, the Pd in the final product is coordinated to two of the four phosphines of ligand 1 and two Cl⁻, the two remaining phosphine arms having been oxidized. However this reaction proceeds much more slowly than the oxidation of DMSO by 2 and may not follow the same reation pathway.

The role played by water in the oxidation of DMSO₂ by complex 2 remains unclear. However, in the absence of water, no oxidation was observed in the presence of 2. The results of the 1^{8} OH₂ labelling experiment are inconclusive. When unlabelled water was added to the reaction of 2 and DMSO, 4.90% ±0.03 ¹⁸O was found in the resultant DMSO₂ by mass spectral analysis. Stirring unlabelled DMSO₂ with ¹⁸OH₂ followed by reisolation of the DMSO₂ showed 4.92%± 0.03 incorporation of ¹⁸O, and the addition of ¹⁸OH₂ to the reaction of 2 with DMSO gave 4.94% ±0.03 ¹⁸O in the DMSO₂ produced. The percentages of ¹⁸O incorporation are not sufficient to draw any conclusions concerning the role H₂O plays in the oxidation process, and should be repeated with an initially higher percentage labelled H₂O.

There have been no reports in the literature of a

similar oxidation of DMSO by a Pd(II) phosphine complex. For this reason, Pd(II) complexes containing Ph₂MeP and Ph₂PCH₂CH₂PPh₂ (dppe) analogous to 2 were prepared in order to investigate their activity towards the oxidation of DMSO. Complexes 6 and 7 did not show any activity towards the oxidation of DMSO, producing no detectable DMSO₂ after three weeks reaction time. In the course of this time, complex 6 crystallized from the solution as pale yellow plates. Complex 7 began to decompose producing a black silt in the reaction flask and Ph₂MePO in solution.

The catalytic oxidation of DMSO to $DMSO_2$ by complex 2 is complicated. The ³¹P NMR spectrum of the final product yields several peaks in the regions expected for both the starting material, and oxidized phosphine. Further study of this system should include the separation and characterization of the resulting Pd species which may provide more information about the active catalyst. The production of DMSO₂ as a function of temperature and pressure of O₂ should also be studied.

TABLES

162a

Table I. Crystal Data for 4

Formula	$PdP_40_2C1_2C_{54}H_{50}$, C_2H_6S0
Formula weight	1126.3
Space Group	P _{na} 2 ₁ , No.33
α,	33.375(5)
β,	11.125(2)
Υ,	14.886(3)
v, ³	5527(3)
Z	4
calc, g/cm ³	1.354
Crystal size, mm ³	0.2 x 0.2 x 0.6
$\gamma(MoK_{\alpha})$, cm ⁻¹	6.2
Data collection instrument	Enraf-Nonius CAD4
Radiation (monochromated in incident beam)	MoK_{α} (= 0.71073Å)
Orientation reflections, number, range (2)	25, 22-34
Temperature, C	21
Scan method Data col. range, 2 ()	$\theta = 2\theta$ 0 = 50
No. unique data, total with F _o ² >3 ₀ (F _o ²)	3896, 3031
Number of parameters refined	592
R ^a ω	0.0662

 $a_{R} = \sigma |F_{0}| - |F_{c}|)^{2} / \Sigma_{\omega} F_{0}^{2}^{\frac{1}{2}}, \omega = \sigma(F_{0}).$

• • ·

• •

.

Table I. continued

.

Quality-of-fit indicator	2.07
Largest shift/esd, final cycle	0.03
Largest peak, e/Å ³	2.2

.

-

compound	conditions	mole DMSO ₂ produced/initial mole compound
[(Ph2PCH2)CH]2	DMSO/air/H ₂ O	0
[(DMSO)Pd(1)] ²⁺	DMSO/air/H ₂ O	5.95
	DMSO/air/H ₂ O	5.40
	DMSO/air/H2 ¹⁸ 0	5.92
	DMSO/air	trace
	DMSO/air/H ₂ 0/2Cl ⁻	trace
[(DMSO)Pd(1)]Cl ₂	DMSO/air/H ₂ 0 ^a	2
(PdCl ₂) ₂ (1)	DMSO/air/H ₂ O	0
[Pd(dppe) ₂](BF ₄) ₂	DMSO/air/H ₂ O	0
[Pd(Ph ₂ MeP) ₄](BF ₄) ₂	DMSO/air/H ₂ O	0
•	DMSO/air/H ₂ O	0

Table II. Oxidation of DMSO by Pd(II) phosphine complexes to form DMSO₂, reaction time 3 weeks

^aReaction time was ca. 1.5 years, open to air on a bench top.

.. .

.

Table III. $31_{P\{1H\}}$ NMR and infrared data.

compound	δ ³¹ P{ ¹ H} (ppm)	ν M _{-X} (cm ⁻²)
(Ph ₂ PCH ₂) ₄ C ₂ H ₄ (1)	- 2 2 . 0	
$[(DMSO)Pd(1)](BF_4)_2$ (2)	+30.9	-
[(DMSO)Pd(1)]Cl ₂ (3)	+30.8	*a
Cl ₂ Pd(Ph ₂ PCH ₂) ₂ C ₂ H ₂ - (CH ₂ P(O)Ph ₂) ₂ (4)	+31.6 ^b +20.4	303 m 291 m
(PdCl ₂) ₂ (1) (5)	+21.4	316 w 296 m
$[Pd(dppe)_2](BF_4)_2$ (6)	+68.3	-
$[Pd(Ph_2MeP)_4](BF_4)_2$ (7)	+13.5	-
[(Ph ₂ P(0)CH ₂) ₂ CH] ₂ (8)	+37.6	-

^aNo absorptions were observed that could be assigned to v_{PdC1} between 400-150 cm⁻¹.

 $b_{+31.6}$ ppm corresponds to P=O; +20.4 ppm corresponds to P bonded to Pd.

atoms	distances	atoms	distances
Pd-C11	2.415(2)	Pd-C12	2.386(3)
Pd-Pl	2.243(3)	Pd - P2	2.229(3)
P1-C3	1.84(1)	P1-C7	1.82(1)
P1-C19	1.80(1)	P2-C1	1.81(1)
P2-C13	1.79(1)	P2-C25	1.78(1)
P3-02	1.480(9)	P3-C5	1.80(1)
P3-C31	1.80(1)	P3-C43	1.78(1)
P4-01	1.485(9)	P4 - C6	1.81(1)
P4-C37	1.81(1)	P4-C49	1.80(1)
C1-P2	1.81(1)	C1-C2	1.54(1)
C2-C3	1.54(1)	C2-C4	1.55(1)
C3-P1	1.84(1)	C3-C2	1.54(1)

.

Table IV. Selected bond distances for 4

.

• • • • • • • • • • • •

_
atoms	angle	atoms	angle
C11-Pd-C12	92.21(9)	Pd-P1-C3	120.4(3)
C11-Pd-P1	87.91(9)	Pd-P1-C7	107.4(4)
C11-Pd-P2	177.3(1)	Pd-P1-C19	115.7(4)
C12-Pd-P1	174.9(1)	C3-P1-C7	106.3(6)
C1-Pd-P2	85.3(1)	C3-P1-C19	98.9(5)
P1-Pd-P2	94.6(1)	C7-P1-C19	107.2(6)
Pd-P2-C1	116.8(3)	02 - P3 - C5	114.5(5)
Pd-P2-C13	112.6(4)	02-P3-C31	110.2(6)
Pd - P2 - C25	112.3(4)	02-P3-C5	112.7(5)
C1-P2-C25	106.6(5)	C5-P3-C31	103.8(5)
C1-P2-C25	99.3(6)	C5-P3-C43	106.8(5)
C13-P2-C25	108.0(5)	C31-P3-C43	108.3(6)
01-P4-C6	113.7(5)	P2-C1-C2	116.2(8)
01-P4-C37	113.9(6)	C1-C2-C3	110.8(8)
01-P4-C49	112.3(5)	C1-C2-C4	108.9(8)
C6-P4-C37	105.1(5)	C3-C2-C4	112.7(8)
C6-P4-C49	104.6(5)	P1-C3-C2	118.8(7)
C37-P4-C49	106.4(6)	C2-C4-C5	111.1(8)
C2-C4-C6	111.2(8)	C5-C4-C6	111.6(8)
P3-C5-C4	116.4(7)	P4-C6-C4	113.1(7)

.

Table V. Selected bond angles for 4

.

atom	x	у	Z	B(A ²)
Pd	0.08823(2)	0.18637(6)	0.000	2.88(2)
C11	0.08154(8)	0.2404(2)	0.1564(2)	2.93(5)
C12	0.04891(8)	0.0091(2)	0.0194(2)	3.70(6)
P1	0.13000(8)	0.3429(2)	-0.0155(2)	3.00(6)
P2	0.09183(8)	0.1314(3)	-0.1438(2)	3.07(6)
P 3	0.24083(9)	0.2768(3)	0.7076(2)	3.56(7)
P 4	0.13353(9)	0.5084(3)	-0.4386(2)	3.64(7)
01	0.1735(2)	0.5271(7)	-0.4801(6)	5.0(2)
02	0.2365(2)	0.1897(7)	-0.2179(6)	4.6(2)
C1	0.1063(3)	0.246(1)	-0.2235(8)	3.6(3)
C 2	0.1468(3)	0.3089(9)	-0.2059(7)	2.9(2)
C 3	0.1432(3)	0.3992(9)	-0.1280(7)	3.2(2)
C4	0.1615(3)	0.3681(9)	-0.2941(7)	3.0(2)
C 5	0.2062(3)	0.4005(9)	-0.2886(7)	3.3(2)
C 6	0.1355(3)	0.4794(9)	-0.3188(6)	3.0(2)
C7	0.1771(4)	0.3023(9)	0.0386(8)	3.8(3)
C 8	0.2059(3)	0.237(1)	-0.0074(9)	3.8(2)
С9	0.2413(4)	0.203(1)	0.0347(9)	5.1(4)

Table VI. Anisotropic positional parameters; starred atoms were refined isotropically.

. .

^aAnisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $(4/3) * [a^2 * B(1,1) + b^2 * B(2,2) + c^2 * B(3,3) +$ ab(cos gamma) * B(1,2) + ac(cos beta) * B(1,3) + bc(cos alpha) * B(2,3)].

· · · · -

atom	x	у	Z	B(A ²)
C10	0.2484(4)	0.228(1)	0.121(1)	5.1(4)
C11	0.2194(5)	0.296(1)	0.1705(8)	5.5(4)
C12	0.1828(4)	0.332(1)	0.1303(80	5.1(3)
C13	0.1248(3)	0.007(1)	-0.1612(8)	3.8(3)
C14	0.1378(7)	-0.054(2)	-0.097(1)	10.3(7)
C15	0.1676(9)	-0.146(2)	-0.109(1)	14(1)
C16	0.1813(5)	-0.171(2)	-0.190(1)	8.6(6)
· C17	0.1668(7)	-0.110(2)	-0.190(1)	9.1(6)
C18	0.1416(8)	-0.010(2)	-0.248(1)	10.0(7)
C19	0.1134(4)	0.482(1)	0.0343(7)	4.0(3)
C20	0.0725(5)	0.501(1)	0.042(1)	6.9(4)
C21	0.0572(6)	0.613(2)	0.073(1)	7.7(5)
C 2 2	0.0831(8)	0.704(2)	0.092(1)	8.4(6)
C23	0.1257(9)	0.686(1)	0.085(1)	8.4(6)
C24	0.1404(5)	0.572(1)	0.055(1)	6.0(4)
C25	0.0440(3)	0.093(1)	-0.1889(7)	3.6(3)
C26	0.0360(5)	-0.009(1)	-0.237(1)	6.2(4)
C27	-0.0004(6)	-0.032(2)	-0.276(1)	9.2(6)
C 2 8	-0.0330(5)	0.057(2)	-0.258(1)	6.9(5)
C 2 9	-0.0258(4)	0.153(2)	-0.209(1)	7.0(5)
C30	0.0124(5)	0.178(2)	-0.176(1)	7.7(5)

•

____...

Table VI. continued

and all spectrum in the second s

•

.

Table VI. continued

atom	x	у	2	в(A ²)
c31	0.02893(5)	0.178(2)	-0.287(1)	4.6(3)
C32	0.3001(4)	0.439(1)	-0.345(1)	7.3(5)
C33	0.3347(6)	0.499(2)	-0.336(2)	10.2(8)
C34	0.3612(7)	0.480(2)	-0.272(2)	10.1(9)
C35	0.3514(6)	0.398(3)	-0.213(2)	12.2(9)
C36	0.3126(4)	0.318(2)	-0.217(1)	8.0(5)
C37	0.1059(4)	0.383(1)	-0.4854(9)	4.9(3)
C38	0.0729(4)	0.329(1)	-0.443(1)	5.2(4)
C39	0.0533(9)	0.233(2)	-0.474(2)	9.0(7)
C40	0.064(1)	0.188(3)	-0.542(3)	12(1)
C41	0.097(1)	0.225(2)	-0.597(2)	14(1)
C42	0.1236(6)	0.339(2)	-0.568(1)	8.1(5)
C43	0.2355(4)	0.209(1)	-0.3997(9)	4.2(3)
C44	0.2369(5)	0.083(1)	-0.403(1)	6.7(4)
C45	0.2311(6)	0.026(1)	-0.492(2)	8.8(5)
C46	0.2272(6)	0.095(2)	-0.569(1)	7.5(5)
C47	0.2259(6)	0.215(2)	-0.562(1)	7.0(5)
C48	0.2308(5)	0.274(1)	-0.4783(8)	6.0(4)
C49	0.1017(4)	0.639(1)	-0.4496(8)	4.4(3)
C50	0.0599(6)	0.640(1)	-0.443(1)	7.3(5)
C51	0.0370(6)	0.746(2)	-0.450(1)	8.2(5)
C 5 2	0.0564(6)	0.849(1)	-0.467(1)	7.2(5)

Τe	ıЪ	1	e	V	I	•	С	0	n	t	i	n	u	е	d	

atom	x	у	z	B(A ₂)
C 5 3	0.0979(6)	0.857(1)	-0.474(1)	7.9(6)
C54	0.1216(6)	0.748(1)	-0.468(1)	6.9(4)
S 1	-0.0097(4)	0.445(1)	0.2503(8)	8.3(3)*
S 2	-0.0187(4)	0.468(1)	0.3408(8)	8.6(3)*
03	-0.0424(5)	0.537(2)	0.273(1)	10.9(5)*
C 5 5	0.0348(8)	0.470(3)	0.307(2)	11.8(8)*
C56	-0.029(1)	0.325(3)	0.317(2)	13.0(9)*
04	9.7141(4)	0.008(1)	0.3495(8)	8.3(3)*

REFERENCES

- Duff, C. M. "Coordination Chemistry of a New Tetradentate Phosphine with Group 10 Metals" Ph.D. dissertation, Chemistry Department, Iowa State University, Ames, IA, Section II, 1987.
- a. Pignolet, L. H. "Homogeneous Catalysis with Metal Phosphine Complexes" Plenum Press: New York, 1983.
 b. Alyea, E. C,; Meek, D. V. "Catalytic Aspects of Metal Phosphine Complexes" American Chemical Series: Washington, D. C., 1982.
- 3. Collman, J. P.; Hegedus, L. S. "Principles and Applications of Organotransition Metal Chemistry" University Science Books: Mill Valley, CA, 1980.
- Engelhardt, L.M.; Patrick, J. M.; Raston, C. L.; Twiss, P.; White, A. H. <u>Aust. J. Chem.</u> 1984, <u>37</u>, 2193.
- 5. Cramer, R. D.; Lindsey, R. V. Jr.; Prewitt, C. T.; Stolberg, U. G. <u>J. Am. Chem. Soc.</u> 1965, <u>87</u>, 658.
- a. Aldrich Catalog of Chemicals, 1986.
 b. "Aldrich Library of NMR Spectra", Vol. 2.
- 7. Crystallographic analysis was performed by Dr. L. Daniels, Instrument Services, Iowa State University.
- Sheldrick, G. M. "SHELXS-86", Institut fur Anorganische Chemie der Universitat, Gottingen, F.R.G., 1986.

9. Cromer, D. T.; Waber, J. T. "International Tables for X-Ray Crystallography" Vol. IV, Kynoch Press: Birmingham, England, 1974, Table 2.2B., Table 2.3.1.

SECTION IV. REACTIONS OF (COD)PtI2 AND THE FORMATION OF AN OLIGOMERIC FIVE-COORDINATE Pt(II) PHOSPHINE COMPLEX

.

INTRODUCTION

The formation of Pd(II) complexes of the tetraphosphine ligand 1, (Figure 1), has yielded dinuclear complexes in which the ligand bridges two Pd atoms, mononuclear complexes in which only two of the four phosphine arms are coordinated, and mononuclear, fivecoordinate "pocket" complexes.¹

The coordination chemistry of Pd(II) and Pt(II) are very similar², and it was a natural progression of this work to attempt to extend to Pt(II) the chemistry that has been observed for Pd(II). However, in the reaction of ligand 1 with many Pt(II) precursors, intractable solids were formed. However, the reaction of (COD)PtI₂ with 1 has yielded an oligomeric five-coordinate complex as the major product.

Figure 1. Ligand 1

EXPERIMENTAL

General Procedures

Preparative reactions were carried out under an inert atmosphere using solvents that were distilled from appropriate drying agent under N₂ or Ar prior to use. Reagents were used without further purification unless otherwise noted.

Solution ³¹P NMR spectra were taken on a Bruker WM-300, or a Bruker WM-200 spectrometer operating in the Fourier mode. Chemical shifts were referenced to an external 85% H₃PO₄ standard. Positive values are downfield of the standard. Solid state ³¹P NMR spectra were taken on a Bruker MSL-300 spectrometer and were referenced to (NH₄)₂PO₄. Solution ¹H and ¹³C NMR spectra were taken on a Nicolet NT-300 spectrometer operating in the Fourier mode. Both were referenced to internal TMS.

Mid-infrared (4000 to 400 cm⁻¹) and far-infrared (600 to 150 cm⁻¹) spectra were taken on an IBM Fourier IR/98 spectrometer. Mid-IR range samples were prepared as KBr pellets or Nujol mulls on KBr plates; far-IR range samples were prepared as Nujol mulls on polyethylene plates.

Conductance measurements were made with a Markson ElectroMark Analyzer on solutions that were approximately 10^{-3} molar.

Cyclic voltammogram experiments were done with a

Bioanalytical Systems CV-1B Cyclic Voltammograph. A threeelectrode configuration was employed, consisting of a stationary, Pt disc working electrode, a Pt wire counter electrode and a Ag/AgCl reference electrode. Solvents were distilled immediately prior to use and contained ca. 0.1 M \underline{t} -Bu4NPF6 (TBAP) as the supporting electrolyte. Analyte concentration was ca. 1×10^{-3} M in a solution volume of 15 mL. Solutions were deoxygenated with Ar and measurements were made under Ar at room temperature.

Unsuccesful reactions of 1 with Pt(II) precursors Reactions of ligand 1 with (COD)PtCl₂, (MeS₂)₂PtCl₂, (PhCN)₂PtCl₂, and (PhCN)₂PtI₂ in benzene yielded beige to white solids that were insoluble and not characterized, but were presumed to be polymeric or Magnus type salts ([Pt(1)][PtCl₄]), which are characteristically insoluble.

Reaction of (COD)PtI₂ with 1

Stirring 0.297 g (0.361 mmol) (COD)PtI₂ with 0.198 g (0.361 mmol) ligand 1 in 150 mL benzene overnight at room temperature precipitated $[IPt(1)]_nI_n$ (2) as the major product. The product was isolated by filtration, washed with benzene followed by ether, and dried <u>in vacuo</u> to give 0.410 g of 2 (91.0% yield based on Pt). Complex 2 is slightly soluble in DMSO, and insoluble in other organic

solvents. When initially isolated from the reaction mixture, 2 is orange in color, changing to a pale yellow color after repeated washes of benzene. It is stable in air as a solid, but as a DMSO solution decomposes over time (1 week). (mp >310 °C) (31 P NMR (DMSO): δ -0.50 (J_{Pt-P} = 2263 Hz))

From the filtrate, a second product was isolated by reduction of the volume of solvent and the addition of ether to initiate precipitation. The pale yellow solid, identified as $I_2Pt(Ph_2PCH_2)_2C_2H_2(CH_2P(0)Ph_2)_2$ (3), was formed as a minor product, yielding 0.017 g of 3 (3.63% based on Pt). Unlike complex 2, it is very soluble in organic solvents. (¹H NMR (CDCl₃): δ 7.84 (4H, m, Ph-ortho (P=0)), 7.60 (4H, m, Ph-ortho (P=0)), 7.3-7.4 (32H, m, Ph), 2.63 (4H, m, CH₂), 2.50 (2H, m, CH), 1.88 (4H, m, CH₂)) (¹³C NMR (CDCl₃): 135.3 (m, Ph-ipso (P=0)), 133.4 (m, Phipso (P-Pt)), 132.1 (m, Ph-ortho), 131.1 (d, ³J_{P-C} = 5.43 Hz, Ph-meta(P-Pt)), 130.8 (d, ³J_{P-C} = 8.32 Hz, Phmeta(P=0)), 128.9 (d, ⁴J_{P-C} = 11.29 Hz, Ph-para(P=0)), 128.3 (A part of an AB₂X system, J_{AB} = 4.26 Hz, J_{AX} = 26.4 Hz, Ph, coupling unassigned))

Reaction of 2 with $AgAsF_6$

Complex 2 (0.010 g, 7.9×10^{-6} mol) was stirred with 0.002 g (7. $\times 10^{-6}$ mol) AgAsF₆ in 5 mL of 50/50 DMSO/CHCl₃. AgI (0.001 g) precipitated from the solution, amounting to 65% of the theoretical. In a separate reaction, 0.014 g $(1.1 \times 10^{-5} \text{ mol})$ of 2 was reacted with 0.006 g AgAsF₆ to give 0.005 g of AgI (92% yield).

In subsequent reactions of (COD)PtI₂ and 1 in benzene, complex 2 was consistently obtained as the major product, and was isolated in yields ranging from 61% to 91%. The more soluble species in the reaction solution, however, gave various product distributions, with four to ten 31 P NMR peaks between -5 ppm and 36 ppm.

Preparation of $[(I_2Pt)_2(1)]_n$ (4)

Ligand 1 (0.096 g, 0.17 mmol) was stirred with 0.065 g (0.17 mmol) (COD)PtI₂ in 5 mL DMSO for 30 h. The reaction was followed by ³¹P NMR, which indicated that the reaction was completed after 20 h. The solvent was removed and the resultant solid washed with acetone to remove the excess ligand, followed by a wash with ether, and dried <u>in vacuo</u>. The filtered product, $(I_2Pt)_2(1)$ (4), is a yellow powder (0.081 g, 81.5% yield). Complex 4 is insoluble in organic solvents, except for limited solubility in DMSO, and is air stable as a solid and in solution. (³¹P NMR (DMSO): δ 0.40 (t, $^1J_{Pt-P} = 2286$ Hz))

RESULTS

$[IPt(1)]_nI_n$

 $[IPt(1)]_nI_n$ is the major product of the reaction of $(COD)PtI_2$ and 1 in benzene, but the yield varied between preparations from 61 to 91%. It is extremely insoluble, being only slightly soluble in DMSO. This limited the use of NMR techniques in characterization. The solution ³¹P NMR spectrum shows a triplet at -0.50 ppm with a coupling between Pt and P of 2263 Hz, (Figure 2a and Table I). In the solid state ³¹P NMR spectrum, two signals were observed at -5.50 and 3.07 ppm (Figure 2b).

Solution ¹H and ¹³C NMR were not useful because of the low solubility of 2. The solid state ¹³C NMR spectrum was taken to determine if COD was present in the product. The spectrum consisted of two signals, one at 130 \pm 10 ppm representing the phenyl carbons, and 32 \pm 12 ppm representing the alkyl carbons of the ligand (Figure 3). The resonance at 32 ppm appears to be two overlying signals for the ligand methylene and methine carbons. No resonances appear for coordinated or free COD in the region of 90-110 ppm, verifying the absence of COD in the product.

A sample of 2 was submitted for Fast Atom Bombardment mass spectral analysis. The highest molecular weight peak of significant intensity from a glycerol matrix was m/e 1145.5, corresponding to $[IPt(1)]^+$, mass 1145. This is

a.

Figure 2. ³¹P NMR spectra of 2, a) solution (DMSO), b) solid state, * denote spinning side bands

ł

÷

Figure 3. Solid state 1^{3} C NMR spectrum of 2, * denote spinning side b

1

.

181

•

followed by loss of iodide to give m/e 1017.5 and loss of Pt to give m/e 885.5, which is the tetra-oxidized ligand 1 (mass 1 = 885.4). The remainder of the spectrum consists of a decomposition pattern typical of the ligand.

The presence of iodide was verified by the precipitation of AgI with a silver salt. Separate experiments in which 2 was reacted with one, and two equivalents of AgAsF₆, verified the presence of two I in the formula of 2.

The conductance of **2** in DMSO is 26.0 $cm^2\Omega^{-1}mol^{-1}$ and is consistent with a one-to-one electrolyte, indicating the coordination of one iodide in solution. However no absorptions were observed in the far-range IR that could be assigned to p_{t-T} (Table I).

Cyclic voltammogram experiments were done with complex 2 in CH_2Cl_2 and DMSO. In CH_2Cl_2 , a two step nonreversible cycle is observed (Figure 4a), with reduction waves at 0.56 \pm 0.01 V and -0.06 \pm 0.03 V, and oxidation waves at 0.65 \pm 0.01 V and 0.38 \pm 0.01 V. In DMSO two nearly reversible couples are observed with reduction waves at 0.58 \pm 0.01 V and 0.20 \pm 0.01 V, and oxidation waves at 0.71 \pm 0.01 V and 0.47 \pm 0.01 V (Figure 4b). The values given are averages with standard deviations from a series of runs at different scan rates. Plots of the anodic and cathodic potentials vs. scan rate are shown in Graphs 1

a. 2 in CH_2Cl_2 with 0.1 M TBAP, scan rate = 2000 mV/sec E_g = 0.66, 0.40, E_c = 0.57, -0.07 eV vs. SCE

b. 2 in DMSO with 0.1 M TBAP, scan rate = 600 mV/sec E_a= 0.68, 0.19, E_c= 0.57, 0.19 eV vs. SCE

Figure 4. Cyclic voltammograms for 2

Graph 1. E_a and E_c vs. scan rate (mV/sec) for 2 in CH₂Cl₂

(CH₂Cl₂) and 2 (DMSO). The data for these graphs are given in Tables II and III. In Graph 1, the potential of the second reduction step changes substantially with scan rate. In Graph 2, the potentials are relatively constant, indicating a nearly reversible system.

$I_2Pt((Ph_2PCH_2)_2C_2H_2(P(0)Ph_2)_2)$ (3)

Complex 3 was produced as a minor product from the reaction of (COD)PtI₂ and 1 in benzene. In several repetitions of this reaction, several minor phosphorus containing products were present, however, 3 was always observed to be present as evidenced by the ³¹P NMR. The ³¹P NMR spectrum consists of a singlet at 29.9 ppm for the uncoordinated, oxidized phosphines, and a triplet at -4.2 ppm with Pt-P coupling of 3220 Hz (Figure 5 and Table I).

The ¹H and ¹³C NMR spectra are consistent, indicating inequivalent phosphorus atoms. Three multiplets appear in the phenyl region of the ¹H NMR spectrum of 3, and in the ¹³C NMR spectrum, seven signals are observed in the phenyl region (Figure 6a). This compares to a maximum of three multiplets in the phenyl region of the ¹H NMR spectrum, and four in the ¹³C NMR spectrum when all four phosphine complexes are equivalent. Thin layer chromotography using silica gel plates and a variety of organic solvents verified the presence of a single compound. The final

identification of 3 was made by the comparison of spectral data with a structurally characterized Pd analogue, $Cl_2Pd((Ph_2PCH_2)_2C_2H_2(CH_2P(0)Ph_2)_2)$ (5).¹ The ¹³C NMR spectra of 3 and 5 are shown in Figure 6a and b. The Pt-I stretching mode was not observed in the far-range IR spectrum.

Complex 3 is a non-conductor, with a molar conductance of 19.0 cm²⁻²mol⁻¹ in CH₃CN (Table I). No absorptions were observed in the expected region of the far-range IR spectrum (200-120 cm⁻²) for the coordinated iodides. In the mid-range IR spectrum, however, P_{-0} was observed at 1188 cm⁻² (Table I).

$[(I_2Pt)_2(1)]_n$ (4)

The reaction of (COD)PtI₂ with ligand 1 in DMSO afforded a five-coordinate oligomeric product. Similar to complex 2, it is insoluble in organic solvents, except DMSO, in which it is slightly soluble. The reaction was followed by ³¹P NMR (Figure 7). The reactants were added in a one to one stoichiometry, and after completion of the formation of 4, the only observed reaction was the oxidation of excess ligand 1. Prior to the addition of (COD)PtI₂, the ³¹P NMR spectrum showed only the resonance

.

Figure 5. 31 P NMR spectrum of 5 in CHCl₃

•

a.

.

1

ł

Figure 6. Phenyl region of a) 1 H NMR spectrum and b) 13 C NMR spectru of 3

for 1 at -22.0 ppm. Upon addition of the Pt reagent, a second peak appeared at -5 ppm. After 10 minutes, the coupling to Pt became visible with a coupling constant of 2230 Hz, and a third peak appeared at 29.9 ppm. As the reaction ensued, the peak at 29.9 ppm increased slowly, and the peak representing the title complex increased rapidly while shifting downfield by almost 1 ppm. After 20 h the reacton was complete, with peaks at 29.9 ppm, representing partial oxidation of ligand 1 (integration:2), 0.40 ppm, representing 3 ($^{1}J_{Pt-P}$ = 2286 Hz, integration:4), and -22.0 ppm, representing free ligand (integration:2).

The molar conductance of 4 is $17.6 \text{ cm}^2 \Omega^1 \text{mol}^{-1}$ in DMSO, which is in the range for a non-conductor, but close to the lower limit for a one-to-one electrolyte (Table I). The accepted range in DMSO for a one-to-one system is 23 to $42 \text{ cm}^2 \Omega^{-1} \text{mol}^{-1}$.

Figure 7. Reaction of (COD)PtI₂ and ligand 1 in DMSO at a) 10 min, b) 45 min, c) 6 h, d) 45 h

.

t

i

.

DISCUSSION

$[IPt(1)]_{n}I_{n}$ (2)

The 31 P NMR spectrum of 2 (Figure 2a) shows a single resonance at -0.50 with a coupling constant of 2263 Hz, indicating the equivalency of all four phosphine arms of ligand 1 in the complex. The solid state 13 C NMR spectrum (Figure 3) verified the absence of COD in the product. It has been previously noted that resonances for the methylene and methine carbons are usually absent in the solution 13 C NMR spectra of metal complexes of ligand 1.¹ This was ascribed to altered relaxation times of these carbons due to the proximity of the metal and dipolar interactions with phosphorus.¹ In the solid state 13 C spectrum of 2, these peaks are relatively intense, which suggests that the relaxation mechanism that predominates in solution is intermolecular and is thus absent in the solid state.

Coupling constants for <u>trans</u>- $(PR_3)_2PtX_2$ complexes are typically between 2300 and 2400 Hz, and for <u>cis</u> phosphine ligands, the coupling ranges from 3200 to 3400 Hz.⁴ In dicationic $[Pt(PR_3)_4]X_2$ complexes the Pt-P coupling is intermediate, around 2600 Hz.⁴ The P-Pt coupling constant in the ³¹P NMR spectrum of complex 2, 2263 Hz, appears to indicate a <u>trans</u> arrangement of the phosphines. It is not possible, however, for the four carbon skeleton of 1 to span the Pt to give a <u>trans</u> complex. The diphosphine with

the shortest linking chain known to coordinate <u>trans</u> consists of six carbon atoms and two oxygen atoms between the phosphines for a total of eight atoms, as opposed to four in ligand 1.⁵ Grossel et al.⁶ has recently shown that the complexes, $[Pt(dppm)_2]X_2$, are five-coordinate in solution. The ³¹P NMR spectrum of $[IPt(dppm)_2]I$ in CH₃CN has a resonance at -61.0 ppm with a Pt-P coupling constant of 2194 Hz. This value is within reasonable range of Pt-P coupling found for 2, which we propose to be an oligomeric five-coordinate complex (Figure 8). The FAB mass spectrum has a major peak at m/e 1145.5, representing the unit $[IPt(1)]^+$, and the conductance is consistent with this formulation, indicating a one-to-one electrolyte. The Pt-I

Figure 8. Proposed structure of $[IPt(1)]_n I_n$ (2)

stretching mode was not visible in the far-range IR. However, this is not conclusive since metal iodide stretching frequencies are of medium to weak intensity and are frequently absent.⁷

The solid state ³¹P NMR spectrum of 2 shows two signals whose Pt-P coupling constants could not be measured because of the large line widths (Figure 2b). The difference between the single resonance in the solution spectrum and two in the solid state can be rationalized by site inequivalency imposed by the crystal, and has been observed for other Pt phosphine complexes that are known to have equivalent phosphorus atoms from crystal structure analysis.³ It is also possible that the one signal observed in solution is an average of the two in the solid state due to fast exchange on the NMR time scale. This could not be explored, however, because of the high melting point of DMSO (5°).

There are inconsistencies in the cyclic voltammograms of 2. In CH_2Cl_2 or DMSO, the ratio of intensities of the anodic to cathodic waves (I_a/I_c) is one, or very close to one. Graphs 3a (CH_2Cl_2) and 3b (DMSO) show the dependence of I_a/I_c on the scan rate and the data for these graphs is given in Tables IV and V. Assuming we begin with a Pt(II) complex in solution, as reduction occurs, some of the reduced species is removed from the electrode surface by

diffusion or solution chemistry. The result is that less of the reduced species remains at the electrode for oxidation in the return anodic wave. The Pt(II) complex is continually replaced at the electrode surface from the bulk solution and $I_a > I_c$. Conversely, if Pt(0) is the starting complex, $I_c > I_a$. From Tables IV and V, we see that in CH₂Cl₂ there is a greater deviation from a ratio of one, but in general $I_{a_{-}}I_{c}$, which is consistent with a Pt(II) species. However, in DMSO, the deviation from a ratio of one is such that $I_{a_{-}}I_{c}$, which is consistent with a Pt(0) species. This anomaly may be due to a difference in the rates of electron transfer between the oxidation and reduction steps that is dependent on solvent. If the rate of electron transfer in the reduction step is slow, the observed intensity of that wave will be diminished. Since the reduction process continues until the wave returns in the oxidation step, the amount of reduced species present builds up. If the rate of electron transfer for the oxidation process is fast relative to that for reduction, the intensity of the oxidation wave is greater, and $I_c < I_a$. The dependence on solvent indicates different pathways for the electron transfer in DMSO and CH₂Cl₂. It may be the stronger donating ability of DMSO relative to CH₂Cl₂ stabilizes an intermediate, thus altering the pathway of electron transfer.

Graph 3. I_c/I_a vs. scan rate for a) voltammogram of 2 in CH_2Cl_2 , and b) voltammogram of 2 in DMSO

The reversability of the reduction of complex 2 differs from the electrochemistry of the "pocket" Pd(II) complex [(CH₃CN)Pd(1)](BF₄)₂ (**6**) (Figure 9).¹ The cyclic voltammogram of **6** in CH₃CN is completely non-reversible (Figure 9). The Pd is reduced in a two step process, but the reduced species is unstable and an unidentified rearrangement occurs to give a new, electrochemically active complex. In the returning anodic wave, the oxidation corresponding to the reduction of the initial complex is not observed. Instead, the generated species is

Figure 9. Cyclic voltammogram of 6 in CH₃CN, 0.1 M TBAP, $E_c = -0.95 V, -1.20 V; E_{c'} = 0.27 V, Ea' = -0.29V;$ scan rate = 500 mv/sec

oxidized to Pd(II) and a second one step reduction/oxidation couple is observed.

This difference in reversability between complexes 2 and 6 can be attributed to the difference in their structures. Complex 2 is oligomeric and five-coordinate, with four phosphines and one iodide coordinated (Figure 8). Complex 6 is similar in structure, being monomeric, fivecoordinate with four phosphines and an CH3CN coordinated. When 6 is reduced to Pd(0), it is constrained by ligand 1 to be square planar. Reduced group 10 metal complexes are d^{10} and have a tetrahedral geometry.² Imposing a square planar geometry destabilizes the reduced complex, and rearrangement or solution chemistry ensues. When complex 2 is reduced, it is not constrained to be square planar by ligand 1 because of its oligomeric nature, and rotation of the two ligands to which the Pt is bound allows the reduced species to attain a near tetrahedral geometry. This serves to stabilize the reduced species and increases the reversability of the reduction/oxidation cycle.

$I_2Pt((Ph_2PCH_2)_2C_2H_2(CH_2P(0)Ph_2)_2)$ (3)

The ^{31}P NMR spectrum of 3 shows two inequivalent phosphorus atoms, one of which is coupled to Pt with a coupling constant of 3220 Hz. This coupling is indicative of <u>cis</u> coordination of the phosphines, and the uncoupled

resonance (29.5 ppm) is in the region of the oxidized ligand 1.

The ¹H and ¹³C NMR spectra clearly show the inequivalency of the phosphine arms. ¹³C NMR was particularly useful in the identification of 3 by comparison with the Pd(II) analogue 5. The phenyl region of the ¹³C NMR spectra of 3 and 5 are shown in Figure 6a and b. The methylene and methine carbons were not observed in either spectrum. The pattern of this region is characteristic of the general structure of 3 and 5 in which two phosphine arms of ligand 1 are coordinated to the metal forming a six-membered chelate ring, and the remaining two have been oxidized and are uncoordinated (Figure 10). The ¹³C NMR spectrum of 3 should be more complicated than 5 due to coupling to Pt. This coupling is small however,⁴ and

Figure 10. Proposed structure of 3
was not detected. At the high-field end of the 13 C NMR spectrum of 3, an AB₂X pattern is observed for which there is no apparent explanation. Based on the chemical shift, it is assigned as a para-carbon. If it is a phenyl bonded to a P coordinated to Pt, the splitting may be due to coupling to Pt. However, this would be a five-bond coupling and would be expected to be very small. If the carbon is in the para position of a phenyl bonded to an oxidized phosphine, the observed splitting may be due to coupling to other phosphorus atoms through hydrogen bonding of the phosphoryl oxygen. The tetraphosphine oxide of ligand 1 has been reported by us, and hydrogen bonding in solution gives rise to inequivalency of the phenyl hydrogens in the ¹H NMR.¹

$[PtI_2)_2(1)]_n$ (4)

The formulation for this compound is based in part on the stoichiometry of the preparative reaction. Reaction of one 1 with one (COD)PtI₂ in DMSO yielded 4, with the excess phosphine being partially oxidized. Upon completion of reaction, the ³¹P NMR spectrum consists of signals at 29.9 ppm (integration:1) representing oxidized phosphine, 0.40 ppm (integration: 4) with coupling to Pt of 2285 Hz, and -22 ppm (integration: 3) for unreacted ligand 1. The coupling to Pt suggests the presence of <u>trans</u> phosphines.

This leads us to conclude it is oligomeric in nature.

The conductance $(17.6 \text{ cm}^2 \Omega^{1} \text{mol}^{-1})$ is below the range expected for a one to one electrolyte in DMSO (23-42 cm² $\Omega^{-1}\text{mol}^{-1}$), but high for a non-conductor. Perhaps 4 disocciates only to a very limited extent in solution. Based on the stoichiometry of two Pt to one ligand, and the fact that it is at least very weakly conducting, the proposed oligomeric structure of 4 is shown in Figure 11. It is interesting that in DMSO a nonconducting four coordinate Pt complex is formed, while in the much less polar solvent, benzene, a five coordinate one to one electrolyte is produced. This may be the result of the ability of DMSO to act as a ligand for Pt, and altering the path by which it reacts.

Figure 11. Proposed structure for $[(PtI_2)_2(1)]_n$

CONCLUSIONS

The coordination chemistry of ligand 1 with Pd(II) and Pt(II) is markedly different. Pd(II) formed dinuclear and mononuclear monomeric complexes from Pd(II)chloro precursors. In contrast, Pt(II)chloro precursors yielded only intractable solids. Reaction of 1 with (COD)PtI2 has given two oligometric products of the formulas $[IPt(1)]_n I_n$ and $[(I_2Pt)_2(1)]_n$, respectively, and a monomeric product in which two phosphines are coordinated and two have been oxidized and are free, I2Pt((Ph2PCH2)2C2H2(CH2P(0)Ph2)2). The reason for this observed difference is not clear. There is a small difference in the covalent radius of Pd(II) (1.31) and Pt(II) (1.32).⁸ This difference in size between the two metals is very small. Nevertheless, the striking contrasts observed in the chemistry of Pd and Pt with ligand 1 appear to be due to different tendencies to oligomerize and it is difficult to dismiss the 0.01 difference in their radii.

TABLES

.

•

-- ----

Compound	$\delta^{31}P$ (¹ J _{Pt-P} ,Hz)	∨M-X (cm ⁻¹)
[(Ph2PCH2)2CH]2	- 22.0	
$[IPt(1)]_n I_n$	-0.05 (2263)	*a
I ₂ Pt((Ph ₂ PCH ₂) ₂ C ₂ H ₂ - (CH ₂ P(O)Ph ₂) ₂)	29.9 ^c 4.2 (3220)	*
[1 ₂ Pt) ₂ (1)] _n	0.40 (2286)	*
Cl ₂ Pd((Ph ₂ PCH ₂) ₂ C ₂ H ₂ - (CH ₂ (0)PPh ₂) ₂)	31.6 ^e 20.4	303, 291
$[(CH_3CN)Pd(1)](BF_4)_2$	30.9	-
[(Ph2P(0)CH2)2CH]2	37.6	-
[(Ph ₂ P(0)CH ₂) ₂ CH] ₂ <u>aAbsorptions were</u> (400-150 cm ⁻¹).	37.6 not observed in the	- expected regio

Table I. 31P(1H) NMR, infrared, and conductance data

. .

· /4

bAccepted range for 1:1 electrolyte in DMSO: 23 - 42 cm² $\Omega^{-1}mol^{-1}$.

^CThe chemical shift at 29.9 represents the oxidized phosphines, the 20.4 shift represents the phosphines bonded to Pd.

 $^{d}\text{Accepted}$ range for 1:1 electrolyte in CH_3CN is 120-190 cm 2 $^{\Omega}_{\Omega}\,^{1}\text{mol}^{-1}$.10

.

-

^eThe chemical shift at 31.6 represents the oxidized phosphines, the 20.4 shift represents the phosphines bonded to Pt.

ν _{P-0} (cm ⁻¹)	Λ _M (cm ²⁻¹ mol ⁻¹)(solvent)	· <u> </u>
-	-	
-	26.0 (DMSO) ^b	
1188	19.0 (CH ₃ CN) ^d	
-	17.6 (DMSO)	
1180	23.0 (CH ₃ CN)	
•	195 (CH ₃ CN)	
1186	-	

E _a (1) ^a	E _a (2)	E _c (1)	E _c (2)	scan rate (mV/sec)
0.64	0.37	0.56	-0.01	800
0.64	0.37	0.54	-0.02	900
0.65	0.38	0.57	-0.02	1000
0.65	0.38	0.56	-0.08	1500
0.66	0.40	0.57	-0.07	2000
0.65	0.38	0.61	-0.09	3000

Data for Graph 1, E_a and E_c vs. scan rate for the cyclic voltammogram of 2 in $\rm CH_2Cl_2$ Table II.

^aIn this and subsequent tables of cyclic voltammetric data, (1) denotes the first reduction or oxidation, (2) denotes the second.

Table	II. Data f the cy	or Graph 2 clic volta	, E _a and I mmogram of	E _c vs. scan rate for E 2 in DMSO	
E _a (1)	E _a (2)	E _c (1)	E _c (2)	scan rate (mV/sec)	
0.71	0.48	0.59	0.20	300	
0.70	0.46	0.59	0.20	400	
0.70	0.46	0.59	0.20	500	
0.70	0.45	0.60	0.19	600	
0.70	0.46	0.58	0.19	700	
0.68	0.45	0.57	0.19	800	

	I _c /I _a (2)	scan rate (mV/sec)
0	0	300
1	1.5	500
1	1	700
1	1	800
1	1.1	900
1.2	1.4	1000
1.3	1.3	1500
1.8	1.1	2000
1.2	1.3	3000
		`
Table V. Data for voltammo I _c /I _a (1)	Graph 3b, I _a /I _c vs. gram of 2 in DMSO I _c /I _a (2)	scan rate for cyclic scan rate scan rate (mV/sec)
Table V. Data for voltammo; I _c /I _a (1) 0.9	Graph 3b, I _a /I _c vs. gram of 2 in DMSO I _c /I _a (2) 1	scan rate for cyclic scan rate (mV/sec) 300
Table V. Data for voltammo; I _c /I _a (1) 0.9 1	Graph 3b, I _a /I _c vs. gram of 2 in DMSO I _c /I _a (2) 1 1	scan rate for cyclic scan rate (mV/sec) 300 400
Table V. Data for voltammo I _c /I _a (1) 0.9 1 1	Graph 3b, I _a /I _c vs. gram of 2 in DMSO I _c /I _a (2) 1 1 1	scan rate for cyclic scan rate (mV/sec) 300 400 500
Table V. Data for voltammo; I _c /I _a (1) 0.9 1 1 1 0.8	Graph 3b, I_a/I_c vs. gram of 2 in DMSO I_c/I_a (2) 1 1 1 1 1	scan rate for cyclic scan rate (mV/sec) 300 400 500 600
Table V. Data for voltammo; I _c /I _a (1) 0.9 1 1 0.8 1	Graph 3b, I_a/I_c vs. gram of 2 in DMSO I_c/I_a (2) 1 1 1 1 1 1 1	scan rate for cyclic scan rate (mV/sec) 300 400 500 600 700

Table IV. Data for Graph 3a, I_a/I_c vs. scan rate for cyclic voltammogram of 2 in CH₂Cl₂

REFERENCES

1.	Duff, C. M. "Coordination Chemistry of a New
	Tetradentate Phophine with Group 10 Metals", Ph.D.
	dissertation, Chemistry Dept. Iowa State
	University, Ames, IA. Section II, 1987.

- 2. Hartley, F. R. "The Chemistry of Palladium and Platinum" Applied Science: New York, 1973.
- Westland, A. D.; Pluscec, J. <u>Coord. Chem. Rev.</u> 1971, <u>7</u>, 81.
- 4. Pregosin, P. S.; Kunz, R. W. "³¹P and ¹³C NMR of Transition Metal Phosphine Complexes" Interscience: New York, 1978.
- Dapporto, P.; Sacconi, L. <u>J. Chem. Soc. Sect. A</u> 1971, 1914.
- Grossel, M. C.; Moulding, R. P.; Seddon, K. R.; Walker, F. J. <u>J. Chem. Soc. Dalton Trans.</u> 1987, 705.
- 7. Ferraro, F. R. "Low Frequency Vibrations of Inorganic and Coordination Compounds" Plenum Press: New York 1971, 111.
- McAuliffe, C. A., ed. "Transition Metal Compounds of phosphorus, Arsenic, and Antimony Ligands" Macmillan Press: New York, 1973.
- Westland, A. D.; Pluscec, J. <u>Coord. Chem. Rev.</u> 1971, <u>7</u>, 81.
- 10. Angelici, R. J. "Synthesis and Technique in Inorganic Chemistry" W. B. Saunders Co.: Philadelphia, 1977.

SUMMARY

The synthesis of a new tetradentate phosphine (1) was accomplished by treatment of the corresponding tetrabromide with Ph₂M (M = K, Na, Li) in THF. Ligand 1 is of interest because of the unique steric and geometric constraints placed on a coordinated metal in M(1) complexes. A square planar geometry is required for M(1) complexes, and square pyramidal geometry is required for complexes of the formula [LM(1)] in which L is an additional ligand. Coordination of two additional ligands, (L₂M(1)], would form a trigonal prism in which the M-L bonds ie staggered between M-P bonds of ligand 1, or a distorted octahedron in which the M-L bonds eclipse two opposite M-P bonds.

Ligand 1

Complexes of the group 10 metals have been prepared with ligand 1. Five coordination modes have been observed in this work. Reaction of anhydrous Ni(II) salts with 1 yielded the mononuclear product $[Ni(1)](X)_2$ (2) (X = BF₄, ClO₄⁻) or insoluble polymers. There was no evidence for coordination of solvent or anion, and the geometry is proposed to be square planar.

Reaction of (PhCN)₂PdCl₂ with 1 yielded a dinuclear product, $(PdCl_2(1) (3)$, in which two adjacent phosphine ares are coordinated cis to a PdCl2 unit forming two sixmembered chelate rings. Further reaction of the dinuclear product with 1 in DMSO forms a mononuclear product similar to Ni, [(solvent)Pd(1)](BF4)2 (4). Unlike the Ni complex, the Pd if five-coordinate with retention of one solvent molecule (DMSO, CH3CN). The solvent can be displaced by Cl⁻ in an equilibrium that lies in favor of solvent coordination. Chloride should coordinate preferentially over DMSO or CH3CN, although the steric bulk of ligand 1 may inhibit coordination of larger donor atoms. Complex 4 was found to catalytically oxidize DMSO in the presence of water and air, producing five equivalents of dimethylsulfone per complex 4 over a three week time period. In the presence of Cl⁻, complex 4 forms only a trace amount of dimethylsulfone and rearranges to a mononuclear product in which two adjacent phosphines are

coordinated to Pd and two have been oxidized, [Cl₂Pd((Ph₂PCH₂)₂C₂H₂(CH₂P(0)PPh₂)₂] (5).

Reaction of 1 with Pt reagents largely produced polymeric products which were not characterized. However, two oligomeric and one mononuclear product were obtained in reaction of (COD)PtI₂ with 1. When this reaction is done in benzene, an oligomer is formed in which two pairs of adjacent phosphines from different molecules of 1 are coordinated to a PtI unit to give a five-coordinate compels. A minor product of this reaction is the PtI₂ analogue of complex 5. When this reaction is done in DMSO, an oligomeric product is formed of the formula $[(PtI_2)_2(1)]_n$ in which one phosphine of two different molecules of 1 are coordinated to a PtI₂ unit to give a coordination number of four. APPENDIX I. SUPPLEMENTARY DATA FOR THE CRYSTALLOGRAPHIC ANALYSIS OF $[(Ph_2P(0)CH_2)_2CH]_2$

•

.

.

atom	υ ₁₁	υ ₂₂	U33
P1	78.(5)	65.(5)	70.(5)
P2	59.(5)	61.(5)	63.(5)
P 3	64.(5)	91.(5)	71.(5)
P4	58.(5)	60.(5)	61.(5)
P1	86.(11)	60.(9)	67.(10)
P 2	56.(9)	59.(9)	62.(10)
P 3	48.(10)	102.(13)	107.(12)
P4	83.(10)	62.(9)	63.(9)
C11	63.(15)	45.(13)	51.(14)
C12	66.(17)	30.(12)	45.(14)
C21	78.(16)	63.(15)	42.(13)
C31	48.(14)	40.(14)	86.(17)
C34	76.(16)	65.(17)	36.(14)
C41	67.(16)	51.(14)	50.(15)

Table I. Anisotropic thermal parameters^a (Å x 10^3) for 4

^aThe form of the temperature factor is $exp(-2 U_{ij}h_{i}h_{j}a_{i}a^{j})$.

•

•

υ ₁ ²	U ₁₃	U ₂₃	
-17.(4)	31.(4)	-7.(4)	
-18.(4)	16.(4) .	6.(4)	
-10.(4)	28.(4)	6.(5)	
-14.(4)	6.(4)	7.(4)	
-26.(8)	26.(8)	-4.(8)	
-11.(7)	24.(8)	-21.(8)	
8.(9)	23.(9)	32.(10)	
-10.(8)	25.(9)	21.(8)	
-20.(12)	15.(11)	-8.(12)	
-16.(13)	5.(12)	-9.(12)	
-8.(13)	1.(12)	4.(13)	
-2.(11)	20.(13)	42.(13)	
-17.(14)	20.(13)	19.(12)	
-11.(12)	14.(13)	-5.(12)	

 یو این وی بید می می دی بند بند می بید اس کا ا			
 atom	x	у	Z
H111	4845	5253	7438
H112	4557	5810	6325
H12	3697	5018	4387
H211	3810	4305	6474
H212	5138	4172	6249
H311	500	-245	7958
H312	420	478	7607
Н34	471	643	10372
H411	-1717	553	9618
H412	-1525	298	7995
H2A	2355	5382	9717
НЗА	2585	6006	11956
H4A	3510	6971	12173
H5A	4178	7356	10190
H6A	3964	6723	7914
H2B	3178	6597	5403
НЗВ	1892	7105	3500
H4B	- 7 0	6750	2515

Table II. Hydrogen atom coordinates^a (fractional x 10^4) for 4

^aThe hydrogen atom parameters were calculated and not refined. The isotropic U values were set to a value of 76.

-

Table II. continued

•

.

H5B	-731	5878	3436
HGB	575	5338	5328
H2C	3596	3538	1315
H3C	2147	3952	-726
H4C	452	4470	- 252
H5C	122	4676	2195
HGC	1571	4325	4204
H2D	4095	3420	7506
H3D	3179	2729	8750
H4D	1577	2117	7456
H5D	884	2179	4930
HGD	1827	2841	3585
H2E	3676	-391	6730
H3E	4050	-244	4351
H4E	3055	551	3041
H 5 E	1615	1209	3882
HGE	1259	1070	6254
H2F	1383	1415	9445
H3F	2259	2268	11033
H4F	4300	2221	12184
H5F	5380	1328	11802
H6F	4499	455	10266
H2G	-1879	1321	11230
НЗG	-1645	2068	13352

.

.

--

• •-----

Table II. continued

.

2

		ی ہے ہے سا سا مند جبر یے نظر کہ کہ کہ کہ اس س	
H4G	- 693	3015	13309
H5G	20	3218	11802
H6G	-124	2465	9147
H2H	-2230	1802	5701
нзн	-4179	2059	4385
H4H	-5803	1853	5444
нън	- 5 5 4 3	1363	7667
HGH	-3583	1140	9015

.

....

.

Calculated and Observed Structure Factors

.

.

,

.

_

.

.

	1 / 287 _293	6 13 294 301	-5 9 308 316	-1 -4 512 -527
L = 0	1 4 207 -275		-5 5 500 510	1 0 110/ 1007
HK FO FC	1 5 419 -401	6 14 257 -250	-5 12 263 248	-1 -3 1104-108/
-10 5 164 142	1 6 1180-1161	7 3 172 -209	-5 13 160 194	-1 -2 483 -477
	1 7 704 700	7 10 100 106	5 10 170 150	1 1 401 474
-8 6 303 362	1 / /84 /82	/ 10 189 -198	-3 18 170 138	-1 -1 401 424
-8 7 206 -225	1 8 181 170	7 15 182 147	-4-15 517 -485	-1 0 444 482
7 2 105 206	1 11 449 449	Q 1 730 757	-4-14 184 -164	_1 & 1315_1367
-/ 2 195 200	1 11 442 -442	0 1 237 232		
-7 3 363 -394	1 12 141 -1/5	8 4 2/4 -285	-4-12 384 -382	-1 6 /54 /5/
-7 6 396 -406	1 13 281 -291	8 8 215 216	-4-11 166 188	-1 7 187 228
	1 1/ 100 100	0 10 100 150	4 10 255 262	1 1/ 10/ 15/
-/ 8 204 -242	1 14 122 -128	8 12 132 -132	-4-10 200 202	-1 14 184 1.50
-7 12 203 -212	1 17 209 -213	8 14 179 181	-4 -8 619 614	-1 16 487 479
7 14 160 101	2 0 1217-1262	9 1 225 210	_4 _7 343 _359	0-17 304 -326
-/ 14 109 -191	2 0 1217-1202		-4 -7 545 -557	
-6 1 122 141	2 1 454 442	9 2 297 296	-4 -5 369 379	0-11 238 -259
-6 3 528 541	2 2 353 -372	9 5 147 -150	-4 -4 285 279	0-10 378 -373
6 7 210 277	0 0 7/7 7/0	0 10 106 133	6 2 106 172	0 0 657 644
-6 4 319 -347	2 3 141 -142	9 10 196 133	-4 -2 100 1/3	0 -9 017 -044
-6 9 228 232	2 4 155 192	9 11 237 -257	-4 2 345 361	0 -8 406 -398
5 2 243 236	2 5 1054-1068	10 8 187 -169	_4 4 178 _194	0 _7 332 345
-J 2 243 230	2 5 1054-1008	10 0 107 -107		
-5 3 361 351	2 6 493 493		-4 5 666 659	0 -5 825 806
-5 4 338 310	2 10 432 -442	L = 1	-4 8 394 403	0 -4 775 -802
-5 4 550 510			4 10 045 001	0 2 116 00
-5 8 424 425	2 13 291 -297	H K FO FC	-4 10 245 -281	0 -3 110 -98
-5 10 436 411	2 17 210 197	-11 -1 251 178	-4 12 317 348	0 -2 1043-1081
5 11 252 270	2 0 262 254	10 6 210 194	A 1A 250 212	0 1 797 973
-5 11 255 270	3 0 303 334	-10 -6 219 -164		0 -1 707 025
-4 1 633 -627	3 1 478 457	-10 8 150 -8	-3-19 255 -235	0 0 87 -122
_4 2 351 385	3 2 842 857	-9-11 202 -158	-3-13 297 -313	0 1 1279 1283
	0 2 500 510		3 10 03/ 050	0 2 1064 1052
-4 3 161 -179	3 3 529 519	-9-10 287 -287	-3-12 234 238	0 2 1064 1052
-4 4 346 369	3 4 436 436	-9 -4 252 -282	-3-10 247 -264	0 3 412 -428
4 7 250 212	2 5 740 763	0 0 260 266	3 0 7/0 720	0 / /01 /88
-4 / 239 313	5 5 249 205	-9 0 200 200	-3 -9 740 729	0 4 471 400
-4 9 467 -470	3 6 180 191	-8-12 167 198	-3 -8 150 -210	0 5 608 -620
_4 16 144 _205	3 8 328 344	-8-11 313 -277	-3 -5 678 -686	0 6 373 - 376
	3 11 500 590	0 10 101 217	3 4 346 333	0 7 369 370
-4 19 124 -84	3 11 298 280	-8-10 191 217	-3 -4 240 233	0 / 308 370
-3. 1 832 -837	3 12 424 -422	-8 -6 373 352	-3 -1 256 309	0 8 513 521
3 7 474 497	3 13 246 269	8 A 198 737	-3 0 1013 1049	0 9 269 293
-5 2 4/4 -40/	5 15 240 200	-0 0 190 297		
-3 3 1367 1373	3 14 264 -284	-8 2 292 308	-3 1 311 -333	0 10 393 385
_3 4 392 _408	4 0 216 216	_7_14 297 269	-3 5 220 -247	0 11 200 -207
	/ 1 50/ 500	7 5 430 400	3 6 205 202	0 10 504 515
-3 6 292 316	4 1 584 582	-7 -5 430 408	-3 0 385 -393	0 12 524 -515
-3 8 307 -322	4 2 505 502	-7 5 333 -345	-3 9 278 -261	0 13 122 200
2 1 570 609	1 2 220 245	7 7 797 373	3 11 201 224	0 15 370 350
-2 1 5/9 -608	4 3 329 345	-/ / 20/ -323	-3 11 201 -224	0 10 070 000
-2 2 850 -853	4 5 319 319	-6-14 203 221	-3 1/ 204 -22/	1-12 330 352
_2 3 407 _397	4 6 121 -126	_6_11 263 286	-2-13 281 262	1-11 234 265
	4 0 121 -120			1 10 202 200
-2 4 2/8 -2/4	4 8 227 225	-6-10 330 -328	-2-10 /60 -/29	1-10 202 -200
-2 5 339 337	4 10 172 190	-6 -8 358 -338	-2 -9 349 387	1 -9 207 -228
2 14 179 241	4 11 254 202	6 7 186 208	-7 -8 463 -457	1
-2 14 170 241	4 11 254 -272			
-1 1 310 295	4 16 258 -246	-6 -3 2/5 -253	-2 -7 351 371	1 -5 419 420
-1 4 1141 1157	4 17 144 -149	-6 -1 591 -548	-2 -6 536 -539	1 -4 712 734
1 5 001 071	5 0 160 100	6 0 167 200	2 5 2/1 204	1 2 260 264
-T 2 0AT 0/T	190 - 190	-0 0 207 -290	-2 -5 241 -500	1 -5 207 -204
-1 6 340 -325	5 2 459 -463	-6 1 319 -297	-2 -4 594 544	1 -2 /25 /31
_1 10 278 _276	5 4 192 -202	-6 12 314 -358	-2 -3 725 -746	1 -1 490 -495
-1 10 2/0 -2/0				
-1 13 149 193	5 / 609 -602	-6 15 195 -261	-2 -2 1830 1862	1 0 964 993
-1 14 268 268	5 8 111 114	-5-16 186 -213	-2 2 1260-1276	1 1 581 581
1 15 197 200	5 11 177 211	5 14 400 369	2 3 1367 1311	1 2 521 556
-1 15 187 200	5 11 1/7 -211	-3-14 409 -308	-2 5 1507 1511	
-1 17 183 224	5 12 135 213	-5-13 286 284	-2 5 10/2-104/	1 3 555 539
0 3 328 347	5 13 244 -248	-5-11 208 -211	-2 7 325 338	1 4 2491 2461
0 / //0 //0	E 1/ 0// 0/0			1 5 120 101
0 4 643 -620	5 14 264 263	-5 -5 220 -207	-2 9 261 287	1 5 168 181
0 5 656 680	5 15 161 -164	-5 -3 461 -459	-1-18 232 -241	1 6 784 767
0 6 505 500	5 16 200 276	5 7 744 757	-1-13 164 100	1 9 659 642
0 0 202 292	7 10 233 -270		-1-13 104 -190	1 000 042
0 7 775 750	5 18 166 -206	-5 0 483 -490	-1-11 150 -130	1 11 200 237
0 10 262 _264	6 0 175 -186	-5 1 444 444	-1-10 380 -364	1 12 214 -242
0 10 202 -204		E 0 2 277 799		
0 11 137 -192	0 2 515 -506	-5 2 655 -603	-1 -2 280 -202	1 15 294 -304
0 17 174 -152	6 5 222 -232	-5 3 323 334	-1 -8 153 210	2-18 195 -174
0 10 220 240	6 0 221 225	-5 6 307 300	-1 -6 287 202	2_17 171 191
0 17 237 -249	0 7 231 -233		-1 -0 207 272	
1 1 334 311	6 11 253 -296	-5 / 190 197	-1 -5 819 /62	2-13 161 157

2 - 11	348 329	5 -2 693 63	0 -7 -7	334 -321	-3 2 341 357	0 12 303 326
2 10	477 449	5 1 401 49	1 _7 _6	368 353	-3 9 558 567	0 13 378 -381
2-10	4// 442	J =1 471 40	1 -7 -0	200 222		
2 -7	124 -11/	5 0 103 -13	/ _/ _4	443 400	-3 11 224 -243	0 16 254 269
2 -6	145 -116	5 1 147 -14	7 -7 -1.	172 228	-2-13 254 -266	0 17 219 226
2 _5	244 -222	5 4 436 43	6 -7 0	176 -214	-2-12 179 157	1-13 352 -337
2 - 3	1/53 1/13	E E 104 33	0 7 0	155 120	2 11 202 277	1 11 129 140
2 -4	1453 1413	5 5 324 33	6 -/ 2	122 120	-2-11 283 -277	1-11 120 -149
2 - 2	1889-1887	5 6 223 22	2 -6-18	233 253	-2-10 319 -269	1-10 167 -228
2 -1	844 803	5 7 358 36	6 -6-13	200 182	-2 -8 210 236	1 -8 618 -637
$\frac{1}{2}$ 1	699 675	5 15 155 _10	5 -6-10	291 320	-2 -7 536 -473	1 -6 570 -552
2 1	500 501 J	5 10 1/0 (0 6 0	016 174		1 5 150 196
22	236 234	5 18 149 -0	0 -0 -0	210 -1/4	-2 -0 383 -300	1 -5 150 186
2 3	324 330	6-10 273 23	2 -6 -1	321 305	-2 -5 380 403	1 -4 271 394
2 4	221 -232	6 -8 509 48	8 -6 0	310 -332	-2 -3 739 713	1 -3 503 489
2 7	671 616	6 6 203 32	7 6 3	137 131	_2 _1 257 _264	1 _2 298 _268
2 1	021 -010			011 001		1 1 616 611
28	274 262	6 1 145 16	4 -6 5	211 -221	-2 0 101 -150	1 -1 626 622
29	391 -373	6 7 212 -21	8 -6 7	161 -193	-2 1 124 -124	1 0 457 -446
2 10	309 - 303	6 8 124 -15	2 -6 9	174 -220	-2 2 635 662	1 2 298 287
2 15	360 353	6 0 105 _21	6 _6 12	250 270	-2 3 1042-1010	1 3 280 291
2 13	309 -333		-012	100 00		1 5 400 400
2 18	128 152	6 10 362 -35	3 -0 13	190 -98	-2 4 /25 /34	1 3 428 423
2 20	168 -136	6 11 362 -37	0 -614	319 -365	-2 7 249 -286	1 6 374 384
3-19	149 22	6 13 335 -33	1 -5-12	311 -301	-2 8 264 223	1 7 242 280
2 12	200 240	6 14 215 23	1 _5_11	285 292	_2 9 224 _230	1 8 362 393
3-12	277 247		1 - 5 - 11	10/ 105		1 11 101 222
3-10	219 231	/ -0 141 -8	1 -2 -8	194 -195	-2 12 429 -402	1 11 191 223
3 -9	246 -233	7 -4 346 -34	0 -5 -7	277 –288	-2 14 172 -155	1 12 130 137
3 -8	197 -195	7 3 177 -19	3 -5 -3	238 -248	-1-14 192 -217	1 14 336 -336
2 7	267 263	7 6 204 -24	4 _5 _1	461 -475	-1-13 505 466	1 16 407 -416
5 -7	207 -203	7 0 204 -24	4 -J -1	401 -475		1 17 180 006
3 -6	439 -444	/ / 136 -18	8 -5 0	269 274	-1-10 1/1 -1/6	1 1/ 152 236
3 - 5	635 596	7 9 265 –27	2 -5 1	644 -643	-1 -8 230 -268	2-16 181 234
3 -4	183 150	8-10 280 -23	4 -5 4	371 -348	-1 -7 222 233	2-11 240 271
2 2	580 607	8 8 500 -48	1 _5 6	288 _327	_1 _6 235 _217	2-10 322 311
5 - 5		8 -8 500 -40	1 - J U	161 167		
3 -2	441 -464	8 -/ 198 21	3 -5 /	101 10/	-1 -3 1083-1120	2 -4 738 709
3 -1	748 -760	8 -4 180 17	3 – 58	275 266	-1 -2 1345-1378	2 -3 231 -258
3 0	137 -136	8 -3 363 -40	4 - 5 9	202 -247	-1 -1 558 -572	2 -2 313 330
2 2	708 -803	8 6 123 -17	1 _4_14	257 _245	_1 0 113 _118	2 1 640 -637
5 2	750 -000		$\frac{1}{1}$ $-\frac{1}{1}$			0 / 701 735
3 5	851 -840	8 9 427 41	4 -4-13	220 -220	-1 1 244 -231	2 4 /21 /33
36	599 -592	8 10 138 13	5 -4-12	220 -233	-1 2 1324 1264	2 6 4/3 4/6
3 7	335 -353	9 1 188 20	3 -4 -9	556 545	-1 3 301 -292	2 7 366 355
3 0	270 302	0 3 159 20	1 _4 _7	222 -235	_1 5 256 _284	2 8 549 -582
5 0	277 - 302		<u> </u>	200 201	1 6 022 052	2 15 260 255
3 9	222 -221	9 5 152 12	0 -4 -5	288 -301	-1 0 833 -832	2 15 200 -255
3 12	204 211	10 1 140 -6	8 -4 -4	187 -184	-1 9 358 352	3-14 180 -238
3 14	202 -229	10 2 239 24	2 -4 -3	393 373	-1 16 297 305	3-11 245 267
3 16	252 -265	10 7 166 -14	1 -4 -1	150 173	0-20 168 -171	3 -9 294 318
1 10	177 1/7	10 / 100 14		225 2/1	0 15 329 324	3 9 406 407
4-10			-4 0	JJJ -J4I		3 -0 400 407
4-13	229 -217	L = 2	-4 2	497 -484	0-12 226 253	3 -1 103 -678
4 -6	695 -692	HK FO F	с –47	422 431	0 -9 621 -599	3-6 442 453
4 -5	298 288	-10 -4 164 -17	4 -4 8	330 -332	0 -8 277 -275	3 -4 424 407
1 1	452 440	10 / 210 19	0 4 0	175 100	0 7 442 445	3 3 776 600
4 -4	405 440	-10 4 210 -18	7 -4 7	1/0 1/7	0 -7 442 -445	3 -3 720 020
4 -3	644 605	-9 -2 214 -22	2 -4 13	189 197	0 -4 /08 -663	3 -2 595 -578
4 2	151 156	-9 1 237 26	3 -4 16	244 184	0 -3 123 148	3 () 227 -224
4 3	421 430	_9 2 329 34	3 -3-20	183 -141	0 -1 510 510	3 1 346 -351
	204 205	0 2 217 22	2 3 LO	1/4 175	0 0 403 490	2 2 152 148
4 4	274 293			140 173		3 3 100 1FC
46	316 336	-9 / 242 24	o -3-9	421 -381	U I 478 -450	3 3 122 133
4 7	331 318	-8-14 157 -13	5 -3 -8	144 198	0 3 1006 985	3 5 365 375
4 R	446 436	-8-11 397 37	7 _3 _7	427 432	0 4 308 323	3 7 233 -266
1 0	240 200	9 10 210 21	5 2 4	262 255	0 5 507 512	4_17 141 134
4 9	240 298	-0-10 219 -21	<u> </u>	202 -200	210 /00 0 0	
4 11	367 382	-8 -5 190 20	/ _3 _4	216 191	0 6 448 -442	4-13 327 -355
5 -9	376 359	-8 -1 275 -24	3 -3 -3	145 -175	0 7 519 -514	4 -6 413 -436
5 _7	346 335	-8 3 396 36	3 _3 _2	545 507	0 8 294 - 344	4 -5 439 -400
5 6	771 720	0 11 104 01	0 2 1	021 021	0 0 25/ 259	6 2 200 212
5 - 5	//1 -/09	-0 11 190 21	7 - <u>3</u> -L	100 100		4 -2 200 212
5 -4	557 555	-/-12 336 27	/ -3 0	220 241	0 10 587 567	4 -1 435 415
5 3	230 252	7.10 188 20	0 _3 1	743 763	0 11 378 373	6 1 150 192

4 2	262 _294	_7 _1	183 _155	-2 16	344 _310	2 2	295 _299	_7 _6	230 -222
4 2	231 _240	_7 3	256 257	_1_15	169 _189	2 3	195 225	_7 _3	182 189
45	336 373	-7 8	152 -174	_1_14	338 350	2 5	472 471	-7 6	380 384
4 5	320 323	-/ 0 · 6 11	100 179	1 10	220 222	2 5	770 725	7 0	20/ 217
4 0	202 -230	-0-11	109 1/2	-1-12	273 204	20	100 107	-/ 0	166 122
4 9	385 -373	-0-10	2/0 202	-1-11	230 246	2 /	100 -197	-0-13	100 123
4 [1	233 -236	-6 -9	152 127	-1 -9	368 -346	28	220 212	-6-12	230 -278
4 16	141 -121	-6 -8	363 381	-1 -/	250 -251	2 9	213 -228	-6 -9	298 306
5-16	145 82	-6 -6	303 281	-1 -5	444 458	2 11	366 372	-6 -/	199 242
5-12	277 -253	-6 -4	313 339	-1 -4	485 -504	2 13	389 373	-6 -4	266 235
5 -7	274 308	-6 -3	328 319	-1 -3	530 -527	3 -7	306 296	-6 -2	586 594
5 -6	373 -364	-6 -2	185 190	-1 -2	552 -534	3 -4	420 415	-6 -1	348 349
5 -3	273 258	-63	236 251	-1 -1	765 –796	3 -3	459 -435	-6 1	326 335
5 -1	231 256	-65	178 188	-1 0	436 411	3 -2	389 373	-67	242 243
50	463 462	-6 15	174 -184	-12	414 -387	33	563 -543	-5-16	207 218
51	204 223	-5-18	199 156	-1 3	464 463	35	219 -219	-5-11	302 -318
52	219 -227	-5-11	301 -341	-1 4	464 429	3 10	151 –175	-5-10	216 218
53	277 269	-5 -6	535 -529	-1 7	1058-1031	3 17	138 -115	-5 -8	445 422
56	365 355	-5 -5	193 -243	-1 10	178 226	4-12	206 -240	-5 -6	499 503
58	278 295	-5 -4	181 -203	-1 12	306 -350	4 -8	280 236	-5 -3	259 276
5 11	125 119	-5 -3	191 167	-1 13	221 -234	4 -3	393 -404	-5 -1	296 314
5 13	188 131	-5 -1	328 338	-1 14	279 -284	4 -2	281 261	-5 0	336 332
5 15	227 222	-5 1	330 -352	0-20	151 82	4 0	506 500	-5 2	230 -241
5 16	213 _210	-5 4	301 302	0-14	326 - 323	4 2	266 -262	_5 4	478 -464
6 -8	453 470	-4-12	227 _250	0_10	126 -133	4 4	576 -564	-4-14	202 269
6 -6	302 267	-4-12	227 -230	0_9	330 326	4 6	376 383	-4-10	373 _416
6 3	230 264	-4-11	30% 200	0 9	366 377	4 1	245 _254	-4 -6	3/8 3/5
6 0	259 204	-4 -0	270 221	0 -0	200 -277 221 - 222	5 11	245 -254	-4 -0	320 314
6 2	201 204	-4 -5	2/7 3/5	0 -0	676 631	5 10	330 320	-4 -5	603 572
6 2	220 244	-4 -4	347 - 343	C - 0	200 274	5 2	220 -227	-4 -4	210 212
	130 119	-4 -3	275 261	0 -4	300 374	5 2	200 247	-4 - 5	500 607
	206 208	-4 -2	3/3 301	0 -2	221 223	23	152 179	-4 -2	099 -007
6 /	286 281	-4 0	557 538	0 0	140 -155	54	208 -205	-4 5	409 - 390
6 12	250 -245	-4 1	396 -425	0 1	/20 -/00	2 6	165 -181	-4 8	323 304
/ 8	250 -257	-4 10	421 -422	0 3	339 -336	5 /	1/0 236	-3-17	318 -283
7 11	256 -289	-3-19	167 -136	0 5	267 294	58	338 363	-3-10	305 - 297
7 13	386 -352	-3-18	187 -149	06	328 - 324	5 10	300 264	-3 -8	142 -163
8 -4	185 -159	-3-16	239 -233	08	486 -607	5 11	238 -254	-3 -6	322 - 360
8 7	259 -237	-3-10	254 -309	0 13	254 264	5 13	166 130	-3 -5	326 -335
97	186 180	-3 -9	370 368	0 15	211 -221	6 -9	136 63	-3 -3	488 -480
		-3 -6	444 430	1-14	270 –285	61	127 142	-3 -2	416 423
L =	3	-3 -3	181 192	1-11	365 -365	62	151 177	-3 -1	269 267
нк	Fo Fc	-3 -2	232 234	1 -9	347 -329	64	242 247	-33	213 211
-11 0	163 181	-3 -1	801 778	1 -8	468 453	66	175 195	-3 4	469 47 0
-10 -3	197 -169	-30	154 177	1 -7	284 -322	7–11	283 238	-35	507 -506
-10 1	172 188	-3 1	277 283	1 -4	527 -527	70	223 221	-37	172 160
-10 5	212 -185	-32	142 174	1 -3	264 239	72	136 207	-38	301 -347
-9 -9	289 -247	-33	406 405	1 -2	347 362	73	223 236	-39	411 430
-9 -7	405 -372	-3 4	219 -225	1 0	255 -268	78	159 -174	-3 12	186 226
-9 -1	194 -192	-36	658 -617	. 1 1	183 222	79	152 147	-2-11	238 247
-8-13	249 -196	-2-15	157 142	1 2	199 -230	7 11	167 202	-2 -7	412 -403
-8 -8	473 -453	-2-11	300 -313	1 3	181 -161			-2 -6	407 407
-8 -2	258 -243	-2 -8	357 - 327	1 5	648 633	L =	4	-2 -5	727 740
-8 1	246 -262	-2 -5	237 -225	1 9	155 175	H K	Fo Fc	-2 -4	357 357
-8 2	431 429	-2 -4	723 746	1 12	505 465	-9 -7	170 -190	-2 -1	254 289
-8 5	264 298	-2 -3	324 312	1 14	249 222	-9 6	140 -42	-2 -2	332 312
_7_14	271 _264	_2 1	310 349	2_11	185 185	_9 q	165 _172	_? _1	183 185
_7_11	209 172	_2 3	901 893	2 _7	212 _237	-8 -7	282 _287	_2 0	412 101
_7 _9	446 461	_2 5	349 _364	2 _/	507 _516	_8 _6	178 _186	_2 1	420 414
_7 _4	210 189	_2 5	425 430	2 _ 7	859 80%	_8 2	322 -313	-2 2	107 150
_7 _3	176 101	_2 J	144 _100	2 - 5	350 2262	_7_12	317 _347	_2 2	374 350
_7 _3	776 402	-2 /	456 472	2 - 2	220 - 202	7 0	170 220	-2 J 9 5	J24 JJ9 415 436
-1 -2	120 003	-2 0	400 473	2 -1	672 610	-/ -7	1/2 230	-2 5	410 400

.

•

_1_17	260 251	43	242 _229	-2 4	241 297	6 0	189 -219	-1 0	229 289
-1-1/	207 251				010 000		200 000		170 1/5
-1-12	437 469	44	2// 296	-2 /	213 238	6 3	268 239	-1 2	1/0 145
1 10	311 206	4 6	300 _408	_1_14	234 -230	7 _2	150 141	-1 4	270 253
-1-10	511 270		330 -400	-1-14	234 -230	7 -2	100 141	-1 -	1(2) 10(
-1 -9	140 163	4 11	168 -164	-1-13	240 278	/ 3	256 209	-1 6	163 186
1 5	209 214	5_1	360 -347	_1_12	160 _187	76	152 85	0_10	204 229
-1 -2	200 214	7 -1	100 -141	-1-12	100 -107	/ 0	152 05	0-10	204 227
-1 -2	212 -232	51	290 328	-1-11	324 342			0 -9	16/ 1/9
1 7	162 200	5 5	174 165	1 10	2/2 222	T	6	0_7	208 270
-1 2	103 -209	ر ر	1/4 -105	-1-10	245 255	<u>ц</u> =		0 -7	270 277
-1 3	162 183	60	157 -151	-1 -8	238 307	нк	Fo Fc	0 -2	201 255
1 6	536 537	<u> </u>	202 175	1 5	150 154	0 6	172 238	0 0	162 195
-1 5	220 221	0 3	203 175	-1 -2	109 104	-9 -0	172 230	0 0	102 175
0-15	151 -197	68	228 204	-1 -3	133 -122	-9 -1	274 287	1–14	208 220
0 0	210 254	7 1	7/0 201	1 2	405 202	Q 7	200 225	1 2	270 264
0 -0	219 204	/ -1	247 201	-1 -2	400 000	-0 -/	200 225	1 -0	277 204
0 -7	148 173	70	191 -217	-1 -1	401 387	-8 1	256 239	1 -4	233 -253
õ ć	501 505	7 0	211 206	1 9	105 250	0 5	220 250	1 4	242 242
0 -0	291 -202	12	211 200	-1 2	193 230	-0 -	220 -200	1 4	245 -245
0 -4	290 -280	74	313 323	-1 3	346 355	-7 -1	372 - 396	2-11	200 -177
õ i	262 250			1 /	205 204	7 /	277 220	2 0	169 215
0 -3	203 -239			-1 4	303 304	-/ 4	5/2 -520	2 -0	100 -215
0 - 1	167 -215	L =	5	-1 5	339 328	-75	147 -97	2 - 2	224 -233
× 1	216 220			1 2	220 202	7 6	174 154	n /	102 150
0 1	310 -330	нк	ro rc	-1 0	228 585	/ 0	1/4 -134	2 4	102 100
0 2	384 - 391	-9 -5	319 300	-1 14	172 127	-6-14	177 102	25	341 -330
ă ā	(76 (6)	0 5	240 226	0 15	202 166	6 11	210 222	2 0	17/ 155
03	0/0 -004	-8 -2	340 -320	0-15	203 100	-0-11	217 -232	5 - 5	1/4 -100
0 4	619 610	-8 1	248 -195	0-12	193 216	-6 -5	183 -217	3 -1	220 -229
ě į	C10 /0C		335 31/	0 10	1/0 170	6 2	225 210	2 2	110 006
05	512 -485	-8 3	335 -314	0-10	149 179	-0 -3	235 -210	د د	212 230
0 10	181 -190	-7-11	314 -341	0 -6	166 203	-6 0	185 -242	4 -4	268 218
0 10	15/ 157	7 2	0/0 050	Å i	260 252	c <i>h</i>	226 221	1. 3	777 250
0 10	120 -12/	-/ -3	243 -236	0 -2	200 -200	-0 4	234 -231	4 - 5	212 230
1-12	404 -407	-7 -3	234 -258	0 -1	307 308	-66	281 -285	43	238 235
1 10	100 100		101 0/5	õõ	100 124	ć ō	251 204	4 5	167 777
1-10	432 -420	-/ 0	191 -245	0 0	109 -124	-0 0	271 200	4)	201 212
1 -7	316 -317	-7 1	212 284	0 1	300 302	-6 10	213 199	47	202 -202
	100 107	c 15	170 115	ō Ā	227 245	5 15	220 202	4 9	100 105
I - J	400 -427	-0-13	1/9 -225	0 4	321 - 343	-1-17	239 -202	4 0	100 195
1 -4	215 234	-60	509 503	06	263 -237	-5 -9	241 -267	52	362 -341
1 2	217 205	c n	10/ 1/7	1 11	200 200	5 0	105 207	5 /	142 00
1-3	21/ -202	-0 2	194 14/	1-11	207 -270	-2 -0	105 -207	J 4	142 77
1 0	531 542	-66	304 290	1 -6	172 -208	-5 -6	163 174	58	171 -131
1 1	125 202	ć ō	205 207	1 2	144 174	5 5	206 210	6 1	157 90
1 1	235 -285	-0 0	293 291	1 -2	144 -1/4		500 519	0 -1	107 -00
1 3	258 -245	-5-15	197 163	1 1	215 -259	-51	229 209		
1 7	110 144	E 12	200 210	1 2	620 614	5 2	202 221	1 _	7
1 4	219 -244	-2-12	209 219	1 2	020 -014	-5 2	203 221	= با 	_′
1 5	383 369	-5-12	185 -256	1 5	306 -283	-53	225 204	нк	Fo Fc
1 7	107 101	5 10	110 276	2 12	220 212	5 /	577 544	7 2	326 204
1 /	12/ 191	-1-10	410 - 570	2-12	237 -213	-5 4	577 544	-/ 2	520 294
1 10	312 -321	-50	192 207	2-10	306 -281	-55	180 -200	-6 -7	218 -215
2 11	160 150	5 1	100 225	2 7	201 _271	-5 0	160 134	_6 _1	330 _297
2-11	107 -150	-5 1	100 225	2 -1	271 -271		100 134	-0 -1	157 -277
2 - 4	249 244	-52	320 342	2 -1	373 -351	-4-16	1/4 -188	-64	157 -112
2 2	221 277	56	393 410	2 0	512 511	_4_11	160 101	-5 -9	164 _117
2 - 3	231 -277		102 -410	2 0		-4-11	107 171		104 -117
2 -2	312 289	-57	459 443	2 5 .	182 221	-4 -9	187 220	-5 -/	219 -258
2 1	409 405	_4_13	358 332	28	170 166	_4 1	154 -178	-5 0	173 -180
2 -1	409 405	-4-15	550 552	20	1/0 100		104 - 170		1/0 005
20	241 -213	-4-12	261 301	29	218 234	-4 2	244 228	د د-	162 225
2 1	490 491	_4 _9	266 -327	3_11	174 _234	-4 3	182 241	-4-11	155 -148
	470 471	-4 -7		, î,	000 1/1	. 10	070 070	, - 7	202 200
2 2	171 -182	-4 -3	554 -344	3 -4	208 101	-4 10	213 -212	-4 -8	203 206
2 4	130 130	_4 0	161 _185	3 1	339 348	-3-10	293 333	-4 -6	186 -318
2 7	1/0 100		A/1 AAA		100 001	2 2	217 224		101 10/
26	162 182	-4 1	241 229	32	100 231	-3 -6	211 -220	-4 1	191 -184
2 1 2	164 184	-4 6	303 -294	34	212 246	-3 -5	345 -311	-4 4	545 538
~	104 104				170 107	2.2	100 100		3/7 300
3 -7	271 280	-4 9	237 236	3, 6	1/9 -18/	0 ز-	187 -180	-2 -9	347 301
3_6	185 242	-4 13	279 -314	4-13	184 128	-3 2	207 -243	-3 0	198 229
<u> </u>	172 107		071 014		160 101		200 0/7	· · ·	101 204
3 -4	1/6 -195	-3-15	2/1 -315	4-11	128 121	8 נ–	208 -24/	ا ز–	-200 = 200
3_2	174 _232	_3 _7	179 _248	4 -5	341 315	-2 -9	178 -163	-3 ?	206 -188
5 - 4	110 111	-3 -1	200 000		107 000	0 7	200 200	, . , .	17) 1/7
ונ	448 446	-3 -0	202 -230	4 3	191 200	-2 -/	222 -200	נ נ-	1/5 144
3 2	202 -215	-3 -1	244 -251	4 5	350 - 352	-2 2	214 -223	-2-12	173 -115
2 2				; =	000 000		100 000	2.2	201 200
3 4	326 -325	-3 8	248 284	4 /	230 -218	-2 3	190 222	-7 -5	251 -525
36	267 275	_2_15	170 -245	4 R	179 _170	-2 б	188 205	-2 2	441 -421
7 4		2-12			170 014	1 1 1	164 1/7		160 100
4 -/	2// 243	-2-14	200 -297	נ- כ	1/9 214	-1-10	104 -14/	-2 3	100 -198
4 _5	185 -183	-2 -8	575 -569	5 -1	165 -158	-1-13	350 -357	-1-12	177 -171
	100 100	0 1	104 000	E 1	2/0 2//	1 1 1	200 201	1 0	202 200
4 - 3	180 -183	-2 -1	100 -238	וכ	J48 - J44	-1-11	209 -284	-1 -9	222 - 298
4 0	133 169	-2 1	235 -237	52	287 287	-1 -9	290 245	-1 -6	172 -199
7 2	100 100			5 7		1 0		0.10	165 176
4 7	<u>אע אא</u>	-2 2	305 313	4	2.35 -248	-1 -8	222 -215	U-10	103 -1/6

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	314 153 406 219 141 328 155 208 265 234 159 161 191 153 219	-312 170 409 187 -179 298 -153 -190 253 -250 176 142 212 -68 164	•
$L = H K \\ -5 -5 -2 \\ -4 -8 \\ -4 -5 \\ -3 -1 \\ -3 3 \\ -2 2 \\ -1 -2 \\ -1 4 \\ -1 6 \\ 0 -9 \\ 0 -2 \\ 1 1 \\ 2 -5 \\ 0 \end{bmatrix}$	8 Fo 196 262 266 174 183 186 213 340 151 172 222 250 155 230	Fc -164 283 220 -159 183 -219 -241 -270 -128 -164 -185 -230 168 -181	

.

.

.

.

.

APPENDIX II. SUPPLEMENTARY DATA FOR THE CRYSTALLOGRAPHIC ANALYSIS OF $(Cl_2Pd)_2(1)$

.

.

.

. .

•

- -

		و چهر برب خدر هم وی دم مند خذر که برم برب خدر که که د		
atom	x	У	Z	
H111	3045.2	3113.3	1709.3	
H112	3398.5	2839.1	1232.3	
H13	4210.5	1917.6	2127.4	
H121	3580.4	2898.5	2823.1	
H122	4385.0	2617.6	3190.8	
H141	4908.8	2455.6	1745.5	
H142	4396.6	3244.3	1239.7	
H16	4861.5	3417.2	2653.1	
H151	3836.5	4381.4	2333.3	
H152	3820.5	4426.8	1613.3	
H2A	2183.6	1868.0	-11.4	
H3A	1116.8	2556.5	-748.1	
H4A	294.1	2995.4	-365.3	
H5A	538.0	2749.9	753.5	
HGA	1604.3	2063.4	1491.1	
H2B	3641.1	2011.4	760.3	
H 3 B	3967.7	1253.9	-5.1	
H4B	3770.3	-424.9	-228.1	
H5B	3246.1	-1345.7	314.5	

Table I. Hydrogen atom coordinates^a (fractional x 10^4) for 5

^aThe hydrogen atom parameters were calculated and not refined. The isotropic U values were set to a value of 76.

.

Table I. continued

.

_....

		······································	
H6B	2920.1	-587.1	1080.9
H2C	3891.3	-758.9	2555.0
H3C	4865.0	-1717.5	2717.0
H4C	5984.8	-1058.0	3273.1
H5C	6131.9	558.5	3669.1
H6C	5158.5	1518.0	3506.3
H2D	3423.6	2682.7	3678.7
. H 3 D	3654.6	2920.6	4794.9
H4D	4139.5	1647.1	5563.7
H 5 D	4395.7	137.3	5216 4
HGD	4166.3	-103.6	4100.6
H2E	4585.1	4102.8	426.5
H3E	4605.1	3608.4	-569.4
H4E .	5584.3	2795.3	-544.5
H5E	6544.5	2478.2	475.1
HGE	6524.8	2971.6	1471.0
H2F	6482.0	4570.2	2978.3
H3F	7405.3	3886.2	3908.0
H4F	7641.4	2206.4	3931.8
H5F	6953.7	1207.5	3029.8
H6F	6030.1	1891.8	2100.4
H2G	4374.5	4483.5	3347.4
H3G	4977.6	4437.8	4511.3
H4G	6066.8	5198.4	5049.2

.....

Table I. continued

ŝ

H5G	6552.0	6008.5	4424.2
H6G	5948.5	6057.1	3262.2
H2H	4058.4	6546.9	2954.6
нзн	3191.8	7755.8	2572.0
H4H	2671.8	8191.0	1444.7
H5H	3018.3	7417.3	699.2
нен	3885.0	6207.9	1081.0
H661	2309.8	5633.7	10395.4
H662	2493.2	4674.1	10851.9
H663	1861.4	4656.0	10122.9
H664	2139.1	4342.3	10524.9
H665	2579.7	5328.9	10786.2
H666	1945.6	5292.4	10059.0
H671	2801.9	5821.9	9413.5
H672	3458.4	5190.2	9475.1
H673	2688.3	4838.6	8988.6
H674	3164.7	4745.6	9171.8
H675	3276.7	5729.2	9596.2
H676	2507.2	5375.9	9109.2

.

.

ATOM	U ₁₁	U ₂₂	U ₃₃	
Pd1	56.(3)	42.(2)	62.(3)	
Pd2	79.(3)	49.(2)	82.(3)	
C13	68.(9)	84.(10)	80.(10)	
C14	75.(8)	56.(6)	86.(9)	
C15	90.(10)	84.(8)	127.(10)	
C16	136.(14)	64.(9)	202.(19)	
P7	58.(9)	53.(8)	49.(9)	
P 8	27.(7)	54.(7)	33.(8)	
P 9	66.(10)	57.(7)	69.(10)	
P10	63.(8)	45.(8)	75.(9)	

.....

Table II. Anisotrpic thermal parameters^a ($A^2 \times 10^3$) for 5

^aThe form of the temperature factor is $exp(-2 U_{ij}h_{i}h_{j}a_{i}a_{j})$.

U ₁₂	U ₁₃	U ₂₃	
-6.(3)	39.(2)	-2.(2)	
-5.(3)	59.(3)	-4.(2)	
-14.(8)	22.(9)	-9.(7)	
-28.(10)	78.(10)	-20.(9)	
-12.(9)	127.(16)	-24.(9)	
15.(7)	27.(8)	9.(6)	
-9.(6)	6.(7)	0.(5)	
4.(7)	51.(9)	12.(7)	
-5.(7)	48.(8)	-3.(7)	

Calculated and Observed Structure Factors

.

· · · ·

					-				
κ.	. 0	5_15	890 942	10 -8	2304 2233	17-13	425 467	1 14	419 -649
		E 10	1111 1011	10 6	757 512	17 0	1120 052	2 7	006 707
нL	ro rc	2-13	1111-1021	10 -0	1.37 -323	17 -9	1130 -932	2 -/	000 /92
02	4710-4731	5 - 3	4095-2870	10 -2	1703 1593	1/ -/	1001 864	2 - 5	3818-3062
0 4	2270 2919	• 5 -1	2275-2450	10 0	807 -735	18-12	1504-1487	2 - 3	3591 3717
ň í	2470 1931	·5 1	463 _722	10 2	1427 1302	18_10	1286 1292	2 _2	1461 -589
	2470 1031		400 -722	10 2	EVO V70	10-10	E10 1272	0 1	2065 2007
0 8	10/9-10/2	5 5	1900-1739	10 12	549 -478	18 -8	512 -375	2 -1	2002-2807
0 10	1571 1586	57	1404 1246	11-23	399 307	18 -4	478 428	20	842 195
0 12	1142-1203	59	1277-1260	11-15	712 582	18 -2	974 -768	2 1	616 1426
0 14	1261 1206	5 11	640 608	11 _9	624 621	18 0	671 709	2 3	3031 2918
0 14	1201 1200		540 000	11 - 7	7/5 000	10 0		2 5	1202 1510
0 16	430 -439	5 21	509 258	11 -/	745 -908	18 2	400 -470	2 5	1293-1539
1-17	685 -565	6-24	487 -324	11 -5	1515 1580	19-21	483 -396	26	903 1223
1-15	1604 1451	6-22	467 418	11 -3	2597-2438	19-15	536 -464	27	2379 2275
1 12	1112 044	6 16	944 961	11.1	2386 2104	10_11	626 563	2 8	869 -896
1-13	1113 -000	0-10	044 901	11 -1	2300 2104	10 5	(22 505	2 0	1614 2/04
1-11	1363 1134	6-14	2423-2385	11 3	033 -210	19 - 3	033 - 390	29	2024-2484
1 -5	392-1085	6-12	2777 2679	11 5	838 957	19 1	624 -736	2 10	838 973
1 - 3	1780 1095	6-10	2678-2569	12-26	514 -513	20-14	568 -461	2 11	1385 1328
1 3	2462 1707	6 . 9	365 335	12_24	689 600	20-10	614 646	2 12	607 -624
1 2	2402 1/9/	0-0	1/10 1/00	10 00	417 400	20-10	1117 000	1 12	402 454
1 2	3888-3113	6 -6	1419 1409	12-22	417 -420	20 -8	111/ -900	2 13	493 -454
1 7	1958 2005	6 -4	1456-1883	12-12	1080 -982	21-15	816 -760	3-13	383 -530
1 9	770 -837	60	1358-1113	12 -8	605 722	21-13	1032 1004	3-12	1056 992
1 11	1005 1026	ě ž	1005 1/00	12 6	910 970	21_11	852 _080	3_11	566 580
1 11	1000-1030	0 2	1000 1400	12 -0		21-11	504 /00	3 10	200 200
1 13	1546 14/1	64	1522-1215	12 -2	1201 1227	21 -5	506 -490	3-10	616 -542
1 15	827 -822	7–17	413 -687	12 0	1609–1590	21 -1	709 -643	3 -9	608 572
2 - 16	904 906	7-15	418 456	12 2	1307 1254	21 1	497 498	3 -7	489 606
2 1/	1057 1026	7 13	007 931	12 0	400 76	22-14	609 540	3 _6	768 -961
2-14	1907-1900	7-13	907 0J1	12 0	400 70 ECO 700	22-14	772 750	J -0	700 - 201
2-12	1/39 1589	/-11	2569-2547	12 10	560 -720	22-12	1/3 -/39	3-3	121 145
2-10	366 -165	7 -9	5097 5099	12 12	634 786	22-10	869 861	3 -4	627 488
2 -8	2238-2360	7 -7	3659-3890	13-23	555 -650	22 -8	744 -618	3 - 3	1030-1418
2 6	640 1000	7 .5	020 1320	13_21	808 803	22 -6	473 260	3 _2	2583-1891
2 -0			727 1320	13-21	(17 55/	22 -0	550 5CO	J - 2 7 1	2000-1071
2 -4	720 208	/ -3	/33 321	13-19	627 -554	22 0	228 262	3 -1	2039 2756
2 -2	448 -360	7 -1	2081-1733	13-11	1027 893	22 2	467 -391	30	2707 1939
2 2	2291-1972	7 1	1331 1660	13 -9	598 -873	23 -7	388 -61	32	811-1131
2 4	1864 1460	. 7 3	2020-2076	13 _7	555 622	24 _4	513 -178	2 2	195 81
2 4	1004 1400	7 5	1110 1054	12 1	717 661	25 12	400 004	2 4	1660 1600
2 8	880 -745	/ 2	1118 1054	13 -1	/4/ 001	27-12	420 200	2 4	1009 1090
2 10	970 995	77	531 -432	13 11	382 569			35	530 -492
3-15	780 -799	8-26	459 -378	14-18	930 830	K =	= 1	36	314 -443
3_13	1496 1306	8_24	773 613	14-16	496 -720	H L	Fo Fo	38	1674-1663
2 11	1017 11/0	0 1/	5/3 600	16 16	1157 1021	<u> </u>	567 30	2 10	2061 2040
2-11	1217-1140	0-14	J42 -000	14-14	1200 1075	0 2	512 1/(/	3 10	575 (0)
3 -7	379 -528	8 - 8	4/5 -280	14 -8	1300 12/5	03	513 1464	3 11	272 -603
3 -5	394 -247	8 -4	2474-2388	14 -6	1330-1169	04	1311-1164	3 12	1673-1649
3 - 3	1377 1484	8 -2	2164 1745	14 -4	1954 1701	05	3822-3706	3 14	628 539
2 1	2011 2020	ë õ	450 574	14 _2	1456-1343	ñ 7	1208 1136	Å_23	458 333
5 -1	2011-3030	0 0	409 -074	14 -2	1400-1040	0 11	1020 1622	4-25	400 500
1 ک	31/2 318/	82	1483-1019	14 2	094 894	UII	1030-1075	4-21	494 -304
3 3	307 -278	84	2078 2016	14 4	893 -875	0 13	1330 1260	4-19	922 710
3 5	785-1045	86	908 -971	14 6	534 718	0 23	492 319	4-17	1007 -925
2 7	1610 1501	8 8	403 512	14 8	373 -384	1-12	878 -829	4-13	418 433
5 7	1019 1001	0 0	100 010	16 10	575 204	1 10	576 -027	·/ 10	407 705
39	9/4 -833	8 10	433 -3/3	12-13	525 -484	1-10	574 650	4-12	402 -285
4-10	505 628	9–17	503 -429	15 -7	457 -506	1 -9	359 -418	4-11	1334-1302
4 -8	2494-2377	9-15	465 556	15 -5	1136 1014	1 -8	1497-1267	4-10	857 995
1 6	2485 2851	9.13	1607-1721	153	1601-1525	1 -6	456 628	4 _9	1316 1459
4 - 0	1400 2001	0 11	1077-1721	15 1	1406 1000	1 5	1007 027	, ,	702 073
4 -4	1023-2013	3-11	2030 1984	12 -1	1490 1099	1 - 2	1021 -031	4 -0	174 -7/3
4 -2	803 -182	9 - 7	2189-1672	15 1	423 -563	1 -3	331 -31	4 -7	1284-1087
4 2	3775-3215	9 -5	1670 1490	15 9	536 398	1 -2	456 -129	4 -6	387 455
4 4	2160 2050	9 _ 3	1185-1118	16-22	941 -835	12	2294-3014	4 -4	927 -769
	1102 1047	0 1	007 720	16 20	915 0/1	1 2	720 1165	, , , , , , , , , , , , , , , , , , ,	1590.2009
4 0	1103-104/	7 1	04/ /09	10-20		1 2	727 1103	4 - 3	1070-2070
4 8	625 788	99	518 -480	16-18	/44 -5/8	1 4	895 1094	4 -1	585 -298
4 12	597 -488	9 11	633 542	17-21	460 525	15	1020-1081	40	347 842
4 14	647 572	10-26	415 271	17-19	842 -956	1 7	424 340	4 1	398 -72
5_10	470 517	10-12	2358 2207	17_17	1174 1180	1 10	524 _403	4 2	2156-1610
5-17	970 JI/	10-12	2330 2231	17 15	LIT 1107	1 10	149 501		1/32 1010
2-1/	817 -/76	10-10	/400-/064	1/-13	D40 -//9	1 12	402 301	44	1422 1210

• ----- --

-

4 5	713 -850	7 14 547 587	12-13 1858-1994	19-14 453 524	2-10 878 -684
1 6	202 500	0 17 676 611	12 12 420 507	10 12 1215 1206	2 7 953 1092
4 0	202 -200		12 - 12 + 420 - 377	19 - 12 $1219 - 1200$	
4 13	369 390	8-15 1434 13/1	12-11 1/84 1/45	19-10 1634 1664	2 -5 1357-1612
5-18	557 -599	• 8-14 716 -576	12 -9 382 -592	19 -8 1140-1060	2 -4 4844-3405
5-17	461 450	[.] 8–13 1158–1189	12 -6 634 789	20 -9 558 -530	2 -3 401 -13
5-16	1286 1116	8-11 479 449	12 -5 833 828	20 -7 690 714	2 -2 328 -198
5_15	610 _576	8 _9 1890 2039	12 -4 556 -501	20 -5 668 -545	2 -1 1084-1073
5 16	1002 1140	0 9 1262 1263	17 3 2513 2345	20 3 493 477	2 0 525 134
5 10	1092-1140	0 -0 1302-1343			
5-12	1066 1241	8 -7 2330-2542	12 -2 670 753	22-21 436 -296	2 1 506 136
5-11	1961 1643	8 -6 801 836	12 –1 2626 2422	22-14 399 131	2 2 1947-1223
5 -9	1781-1642	8 -5 2915 2739	12 0 501 -533	22-11 582 -547	2 4 425 217
5 -8	507 -654	8 -4 806 -794	12 1 1703-1611	22 -9 454 581	2 5 1038 -982
5 _7	716 789	8 -3 787 -498	13-14 669 -747	23 -4 456 -336	2 6 803 647
5 6	2656 2256	9 1 13/0 070	13_13 790 725	24-10 397 -25	2 8 1283 1201
5 -0	2000 2200		10 10 551 570	24-10 577 -25	
5 -5	4/9 309	8 0 414 -169	13-12 331 379		2 11 502 -460
5 -4	2799-2368	8 1 /64 -63/	13-11 3/8 -544	K = 2	3-16 /41 -80/
5 -3	1018 1168	8 2 583 488	13 -9 469 455	H L Fo Fc	3-15 810 -814
5 -2	3023 3014	9-14 891-1003	13 -8 593 769	0 0 4079 3080	3-14 1016 1102
5 0	320 97	9-13 785 833	13 -6 1208-1072	0 1 2446-2529	3-13 1391 1190
5 2	964 1017	9-12 2376 2190	13 _2 575 556	0 2 2363-2329	3-12 1279-1125
5 2	007 1007				3 11 402 417
2.3	887 1007	9-11 /84 -/31	13 0 1494-1462	0 3 725 943	3-11 483 -617
5 4	1078 12//	9-10 1/66-1992	13 2 1397 1344	0 4 682 728	3-10 588 -614
55	1309-1346	9 -8 1148 1335	13 4 769 -785	0 6 1275 1006	3 -9 1358 1346
56	310 -339	9 -5 646 -651	13 6 383 461	0 8 1676-1552	3 -8 527 552
5 7	689 859	9 _4 1080_1236	13 13 409 105	0 9 383 487	3 -7 1409-1361
5 0	910 09/	0 3 793 680	14 20 477 439	0 10 797 1096	3 _6 1619_1223
J 0	515 JU4	9 - 5 765 000		0 10 797 1090	3 = 0 = 1017 = 1223
0-10	535 449	9 -2 2519 2443	14-19 /88 -/49	0 11 601 -664	3 - 1 1310 802
6-13	655 570	9 -1 1050-1096	14-15 693 -681	0 12 593 -697	3 -4 465 -953
6-11	571 -721	9 0 2943-2551	14 5 391 405	0 13 646 754	3 -3 1480 1854
6-10	602 -585	9 1 1074 1126	15-24 498 443	0 14 472 594	3 -2 736 -941
6 -9	1711 1635	9 2 1914 1925	15-17 424 -479	0 15 579 -588	3 -1 1356-1418
é é	1007 070	0 4 320 376	15 16 773 973	1_22 616 _186	3 1 4865 3663
c 7	1007 979		15 1/ 1120 1000	1 12 670 650	2 2 2022 1074
0 -/	992 -000	10-19 034 -492	13-14 1120 1088		3 2 2032-1074
0 -0	9/1 -/56	10-11 680 -560	15-12 1106-1196	1-10 /02 -686	3 4 347 577
6 -4	1293 1218	10-10 930 1089	15-10 717 744	1 -4 733 1111	3 7 888 764
6 -3	1227 1136	10 -8 786 -721	15 -3 473 345	1 –3 1195–1883	3 8 392 -537
6 -2	1758-1489	10 -7 1622-1445	16-21 457 481	1 -2 1563 1298	3 9 693 -615
6 -1	1400-1173	10 -6 889 887	16-19 806 -794	1 -1 596 1188	3 11 826 893
6 0	475 161	10 _5 1319 1396	16-13 489 -408	1 0 2140-1826	4-11 762 722
<u>6</u> 1	2712 2590	10 -3 1317 1397	16 11 13/0 1315	1 1 1203 646	4 10 727 779
0 1	2/12 200	10 -3 1322-1302		1 1 1203 -040	
0 2	4/0 -524	10 -1 1116-1145	16 -9 13/4-141/	1 3 799 919	4 -8 1492-1019
63	1622-1539	10 0 610 535	16 -/ 829 853	1 4 /88 -/90	4 -7 1180 892
67	714 450	10 1 2152 2043	16 -1 572 548	1 5 2210-1949	4 -5 691 -394
69	860 -886	10 3 1827-1925	16 1 662 -622	1 6 1824 1368	4 -4 2164 1599
6 11	1088 1070	10 5 742 632	16 3 455 620	1 7 1365 1313	4 -3 384 329
6 12	386 -580	10 11 /25 512	17_11 478 _389	1 8 978 -962	4 _2 2416_2275
7 12	411 276	10 12 202 620		1 0 6/0 760	4 -2 2410-2275
7-23	411 370	10 13 392 -620	17-10 445 -486	1 9 649 -760	4 0 2001 3379
7-22	524 583	11-16 665 -692	17 -8 749 768	1 11 887 -852	4 2 656 -919
7-20	780 -751	11-14 1238 1288	17 -6 884 -729	1 13 980 1027	4 3 1588 1751
7-14	863 -715	11-12 1401-1469	17 -4 601 507	1 14 436 -529	4 4 1952 1726
7-12	1082 1084	11 -9 560 681	17 2 489 603	1 16 396 373	4 5 980-1018
7_10	1469-1445	11 -8 992 1093	17 4 409 -563	2-21 572 435	4 6 2186-1975
7 5	1512 1511	11 7 700 753	18 25 /67 500	2_10 /20 511	4 7 1037 1009
	1010-1011	11 6 607 707	10 93 605 551	2-19 400 -311	/ 0 007 1070
1 -4	000 -002	11 -0 50/ -/2/		2-10 473 -433	4 0 00/ 737
/ -2	1104 735	11 -4 725 622	18-17 633 649	2-1/ 534 649	4 9 928 - 969
7 -1	897 -756	11 -1 416 475	18-15 923 -946	2-16 1020 989	4 12 927-1026
70	1136 1038	11 0 592 512	18-13 962 971	2-15 632 -634	5-22 427 -419
7 1	348 -481	12-23 489 -305	18-11 983 -918	2-14 1102-1017	5-20 614 506
7 2	2475-2333	12-15 994 1026	19-24 452 466	2-13 752 778	5-17 988 -978
7 1	1361 1023	12-14 605 -503	19_18 415 _486	2_10 776 Q10	5_15 R12 R24

•

5 12	603 608	9 4 1225 1142	13.10 620 555	23 0 478 3	3 7 494 196
7-12	700 (()		13 0 303 506	25 0 470 5	J = 2 + 474 - 170
5 -9	789 -663	8 -3 1809 1618	13 -9 393 -386	24-19 425 -327	3 -1 2440 2267
5 -8	/14 /5/	8 -2 821 /2/	13 -8 61/ 685	24-11 402 79	3 0 460 448
5 -5	504 514	• 8 1 986 -941	13 -2 652 -607		3 2 891 -966
5 -4	1136 1099	8 3 1147 972	13 0 403 556	K = 3	3 4 1359 1594
5 -3	1655-1536	8 4 943 1100	14-19 420 615	HL FO FC	3 6 409 -650
5 -2	1974-1696	8 6 762 -701	14-18 939 851	0 1 1330 953	3 7 367 -279
5_1	1177 936	9-21 417 502	14-17 689 -728	0 2 281 -70	3 8 460 -588
5 -1	600 603	0 15 770 966	14 - 17 007 - 720 14 16 557 747		
5 0	1009 403	9-13 770 800	14-10 JJ2 -/4/	0 0 982 -947	3 9 1213 1062
2 1	1231 -991	9-14 652 -678	14-15 8/8 854	0 8 632 749	3 11 1040 -994
5 2	/16 468	9-13 1590-1600	14-14 594 633	0 9 540 644	3 13 823 887
55	794 -908	9-12 974 1003	14-11 675 -676	0 10 1103-1228	3 14 498 454
57	1585 1635	9-11 1282 1283	14 –9 1105 1128	0 11 512 -547	4-25 507 -164
58	1128-1149	9-10 883 -817	14 -7 914 -873	0 12 656 588	4-21 510 -522
59	824 -890	9 -7 434 -570	14 -6 641 -560	0 22 347 238	4-20 846 757
5 10	1066 1162	9 -5 726 671	14 -5 515 600	1-12 652 -611	4-19 573 513
5 12	445 -679	9 _1 393 _237	14 -4 1255 1204	1-11 675 714	4-18 811 -796
6 22	652 619	9 5 585 630	14 _3 _864 _813	110 634 740	4-16 633 748
6 16	012 010	9 5 505 -050	14 - 5 004 - 015		4-10 000 740
0-10	917 1047	9 11 401 394		1 -9 1463-1414	4-13 1027 1030
6-15	229 -080	10-22 403 388	14 -1 596 565	1 -8 9/3 -941	4-12 386 -382
6-14	1514-1532	10-20 605 -516	15-26 402 -67	1 -7 1917 1651	4-10 1033 1174
6-13	986 1017	10-13 70 2 944	15-16 434 525	1 -6 463 734	4 -8 2010-2077
6-12	1727 1665	10-12 1345 1219	15-14 1217-1170	1 -5 1764-1843	4 -7 1193 -964
6-11	839 -943	10-11 1268-1275	15-12 449 638	1 -4 1154-1270	4 -6 1982 1675
6-10	1367-1374	10-10 1767-1846	15 -8 696 -808	1 1 1846-1157	4 -5 880 1116
6 -8	1302 1404	10 -9 825 933	15 -6 724 760	1 2 815-1157	4 4 2452-1873
64	777 _937	10 -8 2485 2367	15 -5 698 778	1 3 2148 1820	A _2 2623 2239
6 7	076 1136		15 4 546 711	1 / 913 765	4 1 705 715
2 2	2002 1010	10 -7 040 -000	15 2 1002 1021	1 5 1600 1650	4 -1 795 -715
0 -2	2093 1918	10 -0 1303-1311	15 -5 1002-1051	1 3 1400-1030	4 0 737 -902
6 0	/20 -//8	10 -2 /98 /6/	15 -2 565 572	1 / 891 /86	4 1 /3/ -589
61	970 813	10 0 998 -742	15 -1 511 395	1 9 775 -718	4 3 766 263
62	465 -291	10 1 378 420	15 1 401 -421	2-14 457 514	4 4 1240 1091
63	1433-1329	10 2 852 950	16-23 733 -678	2 -8 1026 1140	4 5 916 -855
65	383 672	10 4 502 -537	16-22 505 -595	2 -7 693 438	5-19 456 -535
69	479 672	10 5 388 442	16-21 605 658	2 -6 930 -891	5-18 583 -514
7-18	619 -540	11-10 907 811	16-18 421 -338	2 -5 1490-1345	5-17 1301 1230
7_15	441 481	11 _9 572 642	16-12 405 -465	2 _4 2057 1801	5-16 464 602
7 12	1/17 1202	11 9 702 705	17 20 621 659	2 - 4 2007 1001	5 15 1524 1426
7 11	1417-1322			2 - 3 919 1240	5 10 751 710
7-11	1062-1005		17-19 524 -671	2 -2 1042 -777	5-13 /51 /12
/-10	1538 1497	11 -6 1435 1370	17-18 551 768	2 -1 1549 1178	5-10 1089 -974
/ -9	1946 1898	11 -5 1065 1016	1/-1/ 1116 1043	2 0 3591 3358	5 -9 16/5-166/
7 -8	913 -863	11 -4 1068-1009	17-16 748 -717	2 1 1662 1936	5 -7 1498 1436
7 –7	2476-2341	11 -3 1670-1524	17-15 518 -701	2 2 1206 1434	5 -6 589 513
7 -6	1250 1143	11 -2 1173 1096	18-24 478 43	2 4 1281-1077	5 -5 1374-1506
7 -1	941-1049	11 -1 1236 1124	18-15 663 600	2 6 1889 1821	5 -4 1360-1211
7 0	1454 1650	11 0 674 -647	18-13 457 -565	2 7 1561 1708	5 -1 1271-1216
7 1	896 919	11 3 805 -718	18-12 718 -846	2 8 1524-1356	5 1 1303 1217
7 2	1410 1262	12 16 470 406	19 10 902 036	2 0 1202 1193	5 3 733 719
7 2	471 504		10 2 571 410	2 9 1292-1105	5 4 200 440
1 3	4/1 - 390		10 -2 3/1 -410		
/ 4	112/ 12//	12-12 5/6 -590	19-15 390 -336	2 11 493 550	5 5 587 -684
/ 5	544 628	12 -6 /36 -/00	20-19 462 -326	2 12 346 -485	5 6 363 - 364
76	367 -438	12 -3 365 34 9	20-16 513 649	2 20 335 217	5 7 496 684
78	388 461	12 –2 796 711	20 -8 525 -443	3-16 508 546	5 8 539 758
8-25	446 164	12 -1 913-1001	21-16 562 -528	3-14 729 -826	5 9 365 -311
8-13	599 460	12 0 421 -457	21-15 509 -605	3-12 654 643	5 10 415 -465
8-11	663 580	12 1 473 566	21-14 605 643	3 _9 918 769	6-15 429 350
8 _0	389 -452	13_22 /61 550	21_13 522 504	3 _7 1576_1275	6-14 460 477
α -0 Ω 7	1202 1272	13 31 708 766	21 10 507 510	3 -7 1 3 7 0 - 1 2 7 3 3 3 4 7 7 9 0 4 0 4	6.11 1220 1225
0 -/	1473 14/3	13 10 1155 077	21-12 J2/ -J13	J -U 774 -742	V-II I447-I333
0 -0	997 940	13-13 1133 -90/		3 -3 12/2 1302	0 -9 1327 1297
8 -J	1949-1000	13-11 0/9 090	22 -8 4/0 -486	ט -ג און אין אין אין אין אין אין אין אין אין אי	0-0 140 115

.

.

- --

.

6 -5 1256-1307	10 -2 812 -755	17 -6 455 -409	2 -1 461 343	6 -4 2006-1968
6 4 7219 2047	10 0 522 654	17 5 776 686	2 1 640 957	6 3 1577 1650
0 -4 2318 2047	10 0 523 054	1/ -5 //4 004	2 1 049 -0.57	0 -3 13/7-1030
6 -2 1392-1443	10 2 895 -921	18-22 395 -273	2 2 995 -953	6 1 433 501
6 1 470 339	. 10 3 676 800	19.17 700 679	2 3 400 605	6 3 767 507
0 -1 4/9 -332	• 10 3 070 -009	10-17 700 070	2 3 409 -005	COC - COC C 0
6 0 771 823	10 4 701 784	18-16 577 -498	2 7 713 -745	6 5 727 736
6 1 1252 1255	10 5 415 376	10 15 752 012	2 0 660 752	6 7 507 602
0 I I222 I222	10 5 415 578	10-17 /72 -012	2 9 009 733	0 / 38/ -092
6 3 1443-1222	11-21 454 -422	18-14 615 629	3-23 420 306	6 8 352 508
6 / 670 650	11 10 522 610	10 10 552 567	2 16 507 646	7 10 5/6 / 12
0 4 029 -000	11-19 323 018	10-12 000	3-10 397 -040	/-10 040 -400
6 5 652 872	11-17 791 -847	19-23 537 -507	3-14 706 738	7-12 651 -725
6 7 077 7/5	11 15 014 000	10 21 520 526	2 12 755 004	7 10 1/02 1/27
0 / 0// /45	11-13 014 090	19-21 330 320	3-12 /33 -804	/-10 1402 143/
6 9 1212-1329	11-13 872 -872	19-20 408 488	3-10 644 716	7 -9 753 815
6 10 610 563	11 7 1076 000	10 10 /72 26/	3 0 515 403	7 0 11/7 1010
0 10 420 903	11 - 7 1070 - 799	19-19 4/2 -304	3 -0 JIJ -495	7 -0 2147-2029
6 11 663 754	11 -3 802 -808	19-13 820 -807	3 -7 875 -753	7 -7 811 -697
6 12 500 676	10 10 502 507	10 11 042 1001	2 6 205 227	7 6 9/13 9100
0 12 309 -0/0	12-18 303 -397	19-11 943 1001	7 -0 777 ~571	7 -0 2413 2109
6 14 412 530	12-16 694 802	19-10 517 500	3 -3 757 587	7 -3 1207 1172
7 11 711 507	10 15 /55 506	10 0 050 025	2 2 707 010	7 1 (/7 500
/-21 /21 -39/	12-13 433 380	19 -9 809 -800	3 -2 /8/ -918	/ 1 64/ -538
7-20 454 -495	12-14 1380-1301	19 -8 448 -428	3 0 1569 1710	7 3 384 351
7 10 500 (10	10 10 7/0 050	20 1/ 27/ 71	2 1 051 0/0	7 / 057 074
/~19 590 619	12-12 /48 839	20-14 374 71	3 1 951 840	/ 4 85/ 8/6
7-13 633 642	12-11 661 648	20-10 416 -348	3 2 2153-2017	7 6 758 -705
7 11 1100 1103	10 / 1100 1106	00 C 55C 503	3 3 957 933	7 0 / 20 / 70
/-11 1189-1123	12 -4 1193-1106	20 -0 330 -323	3 3 857 -823	/ 8 438 670
7 -9 658 742	12 -3 856 -888	21-19 432 -78	3 4 680 687	8-14 605 -722
7 5 030 742				0 14 000 722
/ -6 830 -/04	12 -2 1060 1092	22-16 423 21	3 5 610 567	8-13 531 520
7 -5 714 743	12 _1 928 881	23-19 529 -464	3 7 444 98	8-12 646 732
		23-17 527 -404		
/ -1 //2 /2/	12 0 812 -820		3 9 450 -590	8 -/ 1482 1404
7 0 985 928	12 2 578 687	K – L	3 11 811 845	8 _5 1438_1458
7 0 705 720				0 = 5 1450-1450
/ 1 809 -866	13-24 429 213	H L FO FC	4-23 517 122	8 0 930 -894
7 2 1360-1558	13-13 900 862	0 0 3049 2334	4-10 701 636	8 3 836 806
		0 1 1020 00/5	4-10 /01 000	
/ 4 636 419	13-11 543 -701	0 1 1830-2065	4 -9 929 -800	8 5 1046-1077
7 8 579 -693	13-10 615 -691	0 3 1268 1482	4 -8 1365-1414	8 7 928 892
		0 5 1200 1402	4 -0 1000-1414	0 7 720 072
8-18 836 -837	13 -8 452 705	0 4 433 812	4 -/ 835 /23	8 9 483 -598
8-17 695 -700	13 -6 899 -903	0 7 351 -562	4 -6 485 783	9-17 522 -548
0 16 1016 1016		0 0 774 771	/ 1 0000 1000	
8-16 1016 1216	13 0 622 -604	0 9 //6 //1	4 1 2062-1868	9-10 2/9 6//
8-15 828 859	13 1 564 749	1-18 449 -477	4 2 484 -469	9-14 1232-1107
0 1/ 1015 111/	10 0 500 500	1 16 600 504	/ 2 0077 0070	0 10 050 1007
8-14 1015-1114	13 3 308 -323	1-10 003 384	4 3 22/1 22/2	9-12 950 1026
8-13 655 -630	13 4 452 -564	1 -9 583 -772	4 4 846 855	9-10 728 -661
0 10 000 000	12 12 /02 72	1 0 000 005	/ 5 1050 1057	0 (/20)71
8-10 888 802	13 13 403 73	1 -8 996 805	4 5 1359-1357	9 - 6 429 - 3/1
8 -8 1190-1182	14-20 753 -746	1 -7 573 615	4 6 869 -768	9 6 461 652
0 7 10/7 10/0	1/ 10 5/2 (51	1 5 10// 0(1	/ 7 1176 1960	0 0 500 (0)
8 -/ 104/-1009	14-18 200 021	1 -3 1044 -961	4 / 11/6 1268	9 8 528 -693
8 -6 991 1071	14-17 579 564	1 -2 549 242	4 11 457 -464	9 10 382 608
0 5 3105 3001	14 16 500 373	1 1 1061 1/61	5 20 /61 /2/	10 01 575 (10
0 -J 210J 2001	14-10 008 -373	1 -1 1391 1491	5-20 451 424	10-21 3/3 -612
8 -4 460 -466	14 -9 406 520	1 0 1153 1284	5-18 754 -665	10-20 461 -475
0 1 00/ 705	1/ 7 753 000	1 0 0001 0044	5 7 1100 0/1	10 10 /72 (0)
0 -1 894 /UJ	14 -7 753 -009	1 2 2201 2244	J =/ 1100 942	10-19 4/3 090
8 0 917-1007	15-24 439 429	1 3 989 933	5 -4 687 559	10-11 1051-1040
9_15 610 656	15-22 505 527	1 4 2456 2400	5 0 876 949	10-10 743 714
J=13 010 -030		1 4 2400-2407		10-10 /43 -/10
9–13 952 860	15-21 373 180	1 5 974 -826	5 2 1428 1232	10 -9 1643 1811
9-12 1087 1084	15-17 470 527	1 6 1752 1915	5 6 1160 1160	10 8 415 520
J=12 1007 1094		1 0 1/22 1012	2 4 1100-1140	10 -0 415 528
9-11 542 -644	15-16 884 -868	1 7 603 909	5 5 629 -546	10 -7 2210-2105
0 10 468 567	15 14 610 743	1 8 661 652	5 6 1754 1613	10 5 1552 1571
J-10 -00 -J0/	13-14 017 /43	1 0 001 -0.02	J 0 1/J4 1013	
9-9 710 734	15-13 446 -485	1 9 513 -532	5 8 1238-1296	10 -1 625 -596
9 8 538 527	15 _8 /60 _522	1 12 200 5/5	5 10 701 805	10 1 639 725
	10 407 -003	T TC 100 141		TO T 000 (0)
9 -5 358 -374	15 -2 470 -564	1 18 427 -562	6-16 1029 1036	10 3 585 -576
9 _4 1119_1032	16-21 594 657	2_19 625 _536	6-15 1462-1412	10 5 392 580
			J-1J 1402-1412	
9 -3 960 1013	10-19 660 -/12	2-17 698 769	o-14 953-1010	11-1/ 395 -437
9 -2 1160 1138	16-18 631 604	2_15 1115 _006	6-13 1849 1874	11_15 501 653
9 -1 1405-1341	16-13 584 -569	2-13 835 8/7	o-12 489 687	11-12 405 406
9 0 428 - 392	16-12 814 829	2-11 615 -765	6-11 2019-1890	11 _9 626 717
9 Z 433 539	16-10 8/9 -813	2 -/ 6/1 /42	0-9 456 504	11 -8 910-1039
9 3 480 _495	16 -3 729 -645	2 -5 1586-1642	6 -8 703 549	11 -6 2046 1998
10 -/ 800 -817	17-22 401 -137	2 -4 430 414	0 -/ 607 -563	11 -5 901 962
10 -6 633 436	17 _9 513 633	2 -3 714 969	6 -6 391 374	11 _4 1789_1671
	_, _, _, _,, ,,,			TT - TION-TONT

11 0	1220 1220	22 14 425 234	۲ <u>00</u> 41077 1070	10 22 404 220	0 3 1797 1766
11 -2	1220 1250	23-14 423 -224	4 -0 17/2-1020	10-23 404 -220	0 5 1787 1700
11 4	578 747	23-10 419 -18	4 -6 1732 1577	10-22 448 380	0 4 706 -695
11 6	783 _939	24-13 440 243	4 _5 909 _820	10-18 661 688	0 5 1271-1191
11 0					
12-25	201 201	• 25-13 4/2 286	4 -3 543 554	10-10 213 -222	0 8 659 750
12 -7	985 921	•	4 0 758 869	10 -3 961 -876	0 9 956 886
10 5	504 504	V E	4 1 700 010	10 2 660 712	0 10 521 552
12 -5	564 - 564		4 1 728 818	10 2 000 -/12	0 10 531 -552
12 -3	793 938	H L Fo Fc	4 3 298 96	10 4 1159 1263	1-16 462 498
12 1	806 844	0 2 1274 1296	5-17 880 835	10 6 580 -879	1 -8 403 390
12 1		0 2 12/4 12/0	5 15 000 000		1 5 717 (00
13-23	384 -368	0 6 410 -5/3	5-15 834 -840	11-21 442 -294	1 -5 /1/ -698
13 - 22	726 731	0 7 515 596	5-13 778 807	11-19 530 566	1 -4 890 935
12 20	010 00%	0 0 1222 11/6	5 0 702 903	11 17 1015 000	1 3 450 495
13-20	020 -004	0 8 1322 1140	J -9 702 -803	11-17 1015 -998	1 -5 459 485
13-18	686 741	0 9 613 -540	5 -7 2122 2313	11-14 604 -763	1 -2 1467-1551
13-15	580 661	0 10 812 -728	5 _5 1782_1795	11_12 839 849	1 _1 _498 _736
10-10	000 001		5 -5 1000 001		
13-13	834 -909	0 12 489 467	2 -3 1099 981	11 -0 411 313	1 0 1028 1086
13 -8	915 1030	1-19 618 -597	5 -2 860 -820	11 -5 721 815	1 2 493 561
13 6	780 774	1 _9 2062_2162	5 0 754 683	11 1 722 998	1 3 1105 _951
15 -0	705 -774	1 -7 2002-2102	5 0 754 005		
13 -1	948 849	1 -/ 2442 2201	5 1 612 -484	11.5 510 -597	1 4 2508-2676
14 - 23	477 -123	1 -5 2922-2573	5 3 412 462	12-18 622 -539	1 5 770 839
14 10	601 770	1 2 402 227	5 4 444 603	12 12 5/0 502	1 6 2420 2506
14-19	091 //2	1 -3 462 321	J 4 444 -093	12-12 546 595	1 0 2439 2390
14-17	746 -802	1 -1 1803 1479	5 5 1235-1156	12-11 407 -347	1 8 1038-1039
14 15	616 717	1 0 1593 1414	5 7 895 909	12_10 890 _899	1 9 703 -532
14-15	040 747				
14-13	492 -586	1 1 1975-2076	5 9 607 -598	12 -4 1426-1355	1 16 4// 491
14-12	535 674	1 2 1201-1211	6-13 575 550	12 -2 1157 1132	2-17 614 620
1/ 7	CO/ CE1	1 2 2072 2000	6 10 060 1025	13 35 /37 130	2 7 1114 1042
14 -/	094 -031	1 3 2072 2000	0-10 900 1025	13-23 437 128	2 -7 1114 1043
14 -5	936 965	1 4 469 429	6 -9 540 613	13-11 450 -510	2 -6 789 -667
14 _3	1009-1008	1 5 2054-1956	6 _2 1328_1425	13 1 601 822	2 _5 954 _995
15 0	1007-1000	1 7 005 0/7	0 - 2 1020 - 1420	13 2 880 1007	
12 -8	483 -532	1 / 995 947	6 U 1266 1319	13 3 820-1007	2 -4 080 078
15 -6	1022 922	2 -8 1267 1290	6 3 599 -463	13 5 432 765	2 -2 379 -394
15 _4	1187_1103	2 _6 2233_2145	6 6 499 823	14-20 626 -598	2 _1 994 1015
15 -4	1107-1105		(0 770 000	1/ 10 37/ 302	
15 0	382 -200	2 -5 547 -574	6 8 //9 -902	14-18 //4 /93	2 0 407 338
16-23	538 -698	2 -4 1968 2085	6 10 924 1104	14-16 464 -685	2 1 1617-1601
16 22	100	2 2 2975 2602	6 12 712 922	14 4 453 612	2 2 439 500
10-22	425 -100	2 -2 2073-2092	0 12 /12 -822		
16-21	982 878	2 -1 861 /62	/-19 /23 /5/	15-23 498 -574	2 4 447 564
16-19	724 -794	2 0 1985 1818	7-17 573 -554	15-17 728 -735	2 5 414 331
16 5	102 604	2 1 424 544	7 16 496 506	15 15 1050 1000	0 7 5/7 712
10 - 2	493 -004	2 1 424 - 300	7-10 480 500	1019 1098	2 / 34/ -/13
16 7	399 -28	2 2 449 -397	7-13 558 572	15-13 1089-1082	2 9 565 707
17-25	477 -203	2 4 1977-2020	7-11 1140-1209	15-11 683 701	2 11 481 -852
17 20	007 036	2 5 570 555	7 2 202 206	16 20 500 560	2 12 076 000
17-20	89/ -830	2 3 370 333	/ 3 323 380	10-20 309 -368	3-12 970 -000
17-19	453 -590	2 6 2608 2854	7 11 548 -632	16-18 484 607	3-10 1309 1300
17_18	1166 1187	2 8 2352_2165	8_20 520 578	17_11 544 480	3 -8 772 -828
17 10	1001 100/		0 10 1012 10/5		3 = 515 = 577
1/-10	1291-1290	2 10 /20 912	8-18 1013-1065	18-18 4/3 445	3 -5 515 -527
17-14	705 748	3-13 423 553	8-16 1682 1628	18-16 628 -739	3 -4 513 612
17-10	761 _640	3_10 720 683	8-14 1548-1443	18_14 722 812	3 _2 2355_2466
17-10	F10 E00				3 - 2 2 3 3 3 - 2 4 6 6
1/ -8	212 283	3 -8 807 -839	8-12 407 543	18-11 408 398	3 0 2042 1894
17 -6	611 -599	3 -7 993 -899	8-10 672 629	19-11 612 749	3 1 640 -753
18_20	403 50	3 _6 404 545	8 _8 1051_1003	19 _7 /67 61/	3 2 1465-1384
10-20	405 50	J =0 404 J4J	0 -0 1991-1903	19 =7 407 014	5 2 1405-1504
18–14	466 610	3 -5 777 909	8 -6 2/63 26/6	20-17 391 239	3 3 1052 940
18-13	766 -821	3 -1 833 953	8 -5 682 593	20 -6 923 -921	3 4 954 1052
10 12	407 501	2 1 1679 1500	0 / 2050 20/0	20 / 702 705	2 0 539 770
10-12	427 - 321	3 1 10/0-1090	0 -4 2030-2049	20 -4 /93 /95	3 8 338 -770
18-11	755 634	3 2 559 -670	8 -3 419 -398	20 -2 445 -472	4-11 548 592
18 -5	691 614	3 3 1826 1761	9-17 935 889	21-19 443 249	4 -9 1081-1045
10 11	672 100	3 / 7/6 000	0 15 066 1021	22 12 400 446	A 7 1000 1701
17-24	420 198	5 4 740 900	A-12 A00-1031	22-12 499 -440	4 -/ 1002 1/21
20-19	534 -581	3 7 553 -693	9-14 460 -607	22–10 514 494	4 -5 1155-1168
20-17	741 764	3 9 733 713	9-13 1047 973	23-12 430 -262	4 -3 511 742
10 0	141 104		0 11 1510 1/20		4 1 010 011
20 -9	402 -391	3 11 21/ -/0/	9-11 1312-1438	· .	4 -1 919 911
20 5	425 167	3 13 476 624	9 -9 1287 1341	K = 6	4 1 1567-1465
21.14	664 679	4-20 652 721	0 5 1617 1572	H I Fo Fo	A 3 2005 2071
21-10	117 -070		· · · · · · · · · · · · · · · · · · ·		
22-16	41/ 60	4-18 752 -752	9 -3 2573 2558	U U 1261-1197	4 4 518 -498
22 0	472 -40	4-12 536 -651	9 -1 2196-2093	0 1 2284-2473	4 5 2056-2094
23-16	489 297	4-10 1354 1334	9 1 948 1060	0 2 893 907	4 7 1122 1205
			· · · · · · · · · · · · · · · · · · ·		
1 12	557 011	16 19 309 227	5 _6 1031 _1002	1 7 778 988	18-12 508 527
-------	-----------	-------------------	-----------------	----------------	-------------------
4 15	222 011		5 -0 1051-1002		
5-14	590 -655	17-20 511 -610	5 -3 1661 1600	2-10 363 349	20-18 469 5/1
5 -1	405 545	17-18 983 931	5 3 597 584	2 –7 605 639	20 -9 425 -354
5 0	410 666	. 17-16 1143-1095	5 5 734 -837	2 -4 537 616	22-12 427 300
5 1	542 500	17 14 672 796	6 5 549 646	2 _3 /05 _/20	
5 4	545 -596	17-14 072 780			
56	1052 1145	17-10 464 -491	6 -2 1594-1/14	2 -1 513 514	K = 9
58	902 -915	17 -8 648 774	7-21 477 -190	3-13 740 -671	HL Fo Fc
5 10	579 719	17 -4 556 537	7-18 591 -537	3-12 729 -689	0 4 467 -476
2 1C	1000 10/5	10 15 763 057	7 11 1044 061	2 11 722 957	0 11 664 713
0-10	1308-1345	18-13 703 837	7-11 1044 -901	3-11 723 837	
6-14	557 646	18-13 1029 -989	/ -8 462 4/0	3 -9 //6 -885	1-10 831 -763
6-13	1562 1531	18-11 677 852	8-17 554 552	3 -3 737 -820	1 -8 675 745
6_11	1291-1186	18 1 709 678	8-16 829 922	3 -1 1452 1432	1 -6 654 -760
/ E	(00 521		0 15 0/0 014	2 0 462 563	1 2 636 903
C- 0	009 -331	20-18 413 287	8-15 848 -810	J 0 402 J0J	
6 -3	827 759	20-17 620 716	8-14 1085-1050	3 1 1369-1308	1 4 599 -/4/
6 -1	424 -740	20-16 547 -446	8-12 418 437	3 2 450 728	2 -9 492 581
7-10	962 1038	20-15 488 -512	8 -4 1611-1791	3 3 1030 1165	2 -7 728 -759
7 0	630 640	20 9 546 -617	8 -3 536 661	4-15 432 -483	2 -5 472 633
7 - 7	050 -040			/ 10 070 012	1 2 702 0/0
/ -8	2259-2333	21-18 442 479	8 -2 010 282	4-12 8/0 813	2 -3 /83 -849
7 -6	2190 2003		9-22 451 -54	4–10 1269–1328	2 -1 447 622
7 -3	408 -623	K = 7	9-16 493 -585	4 -8 1235 1232	3-16 424 -52
7 0	700 950	H I Fo Fo	0_13 /50 556	4 -6 651 -652	3 -2 465 441
1 0	799 010				3 - 2 + 0 - 3 + 1
/ 2	1121 -949	U I 530 436	9 -9 903 953	4 -2 1108 1088	3 -1 333 683
74	602 605	0 2 724 591	9 -5 544 -590	4 0 896-1011	5-18 424 233
75	444 -565	0 3 498 -531	9 -3 1282 1168	4 1 930-1084	5-15 788 -692
8.16	492 522	0 8 506 680	9 0 484 619	4 2 651 865	5-13 502 590
0-10	402 J22			4 2 1126 1117	5 0 711 967
8-14	501 -453	0 9 494 -373	10-20 409 -422	4 3 1120 1117	5 0 711 802
8-13	733 664	0 10 594 -68/	10-18 566 589	5-17 531 465	5 3 628 829
8-11	1188-1308	1-10 539 -560	10 4 423 557	5 -8 834 -888	6-13 509 -540
8 -9	800 711	1 -9 1311-1241	11-19 456 370	5 -6 601 597	6-11 711 767
0 4	404 476	1 0 004 001	11 17 662 675	5 1 1009 954	6 3 755 831
0 -0	404 -470	1 -0 904 001	11-17 002 -075	J -1 1009 -954	
8 -3	1735 1679	1 -7 2088 2036	11 -6 530 589	5 1 507 704	6 1 1086 -877
8 -1	1361-1368	1 -6 1345-1235	12-23 402 204	6-16 902 -812	6 3 478 371
8 5	749 _779	1 _5 1175_1240	12 -9 526 598	6-15 409 -410	7-20 435 389
0 7	767 1061	1 / 676 756	12 0 577 504	6 14 1096 1229	7 _2 865 888
0 /	/07 1001	1 -4 070 750			7 -2 000 000
9-14	487 - 393	1 -1 1358 1315	14-18 433 460	0-13 /35 8/3	7 0 1142-1065
9 - 9	580 562	1 1 1680-1635	14 -2 468 520	6-12 873 -797	/ 2 612 /41
9 1	514 -431	1 2 460 546	15-16 665 679	7-13 606 -641	7 10 504 -432
9 2	439 -680	2 _8 499 610	15-15 496 576	7-11 851 835	7 14 468 -270
10 11	1205 1170		15 12 410 200	7 0 1020 001	9 17 605 690
10-11	1203-11/8	2 -/ 1011-100/	13-12 410 399	7 -9 1039 -901	0-17 000 000
10 -9	182/ 1849	2 -6 1152-1179	15-11 697 613	/ -6 858 83/	8-12 957 -895
10 -7	2286-2221	2 -5 1406 1366	16-15 669 -582	8 -9 579 588	8-13 698 753
10 -6	818 774	2 -4 1353 1347	16-13 740 748	9-15 424 -543	8 -7 1006 1017
10 1	1158 1234	2 .3 440 -563	16_12 462 417	10-18 389 -236	8 -5 797 -944
10 -1	100 107		16 11 654 600	10 12 7/5 004	9 3 026 707
10 3	488 -093	2 -2 1401-1442	10-11 054 -020	10-12 743 -804	8 - 3 920 797
11-16	599 492	2 -1 617 804	16 -9 473 626	10 -5 704 634	8 1 4/0 464
11 -8	1301-1301	2 0 534 712	18-15 525 541	11-17 423 311	9-14 785 732
11_6	2015 2825	3 _9 605 589	19 _9 580 _687	11-11 500 608	9-12 886 -822
11 -0	2913 2023	3 - 5 005 505	10 -7 -700 -607	11 6 707 707	0 2 905 902
11 -4	2304-2323	3 -6 524 695	19 -7 702 041		9 - 2 895 - 892
11 -2	1519 1498	3 -1 775 892	20 -4 455 613	13-21 450 -544	9 0 484 519
11 6	562 -978	3 1 627 -628	22-16 448 119	13-13 469 413	10 1 675 -567
12-21	530 556	3 2 415 693	23 -7 461 446	14-18 533 -676	10 3 940 823
12.20	380 337	4-15 460 446	<u></u>	14-15 567 604	11-20 559 336
12-20	300 -234	4-13 407 440	" 0		
13-22	607 606	4-10 /95 815	K = 8	10 0 099 -081	11-14 409 -442
13-20	544 -632	4 -8 1296-1320	H L Fo Fc	16-14 433 -238	12-15 545 -494
13-18	555 691	4 -7 603 664	0 0 1125-1261	16 6 413 -76	12-11 646 -661
13 .4	565 _ 640	4 -6 665 640	0 1 755 766	17-21 503 -218	12 1 810 690
1/ 17	710 725			17 16 694 644	12 2 515 575
14-1/	/19 -/35	4 0 693 398	0 2 1294 1289		
14 -7	1021-1105	5-15 697 -784	0 3 736 855	1/-14 697 690	15 8 399 36
15 -2	771 715	5-13 918 921	0 4 1008 -959	18-16 452 472	13-10 424 610
15 0	574 -653	5 -7 982 973	0 10 568 -622	18-14 594 -624	13 -8 423 -427

.

.

• • • • • • •

.

237

13 0 840 736 13 2 920 -765 13 4 527 539 14-13 505 -389 14 0 496 -272 14 1 515 -408	7-11 1018 976 7 1 484 -483 7 14 473 226 8 2 492 330 8 3 490 -294 8 4 674 -545	6 -6 465 523 6 -1 767 863 6 0 567 -494 6 1 1011 -868 6 3 599 511 6 11 547 -386	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	K = 15 H L Fo Fc 1 -5 406 379 4 -4 411 396 5 -4 396 -77
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9-13 565 610 9 9 454 283 10-18 499 -300 10-15 401 -298 10-12 683 -713 10-10 1002 1002	8-19 476 -256 9-12 568 -675 9-10 721 823 9 0 1238 1056 9 2 574 -619 10-20 399 293	9-13 500 495 9-4 376 -271 9 10 496 -214 10-12 627 -595 10 0 586 583 11-14 388 124	
19-10 456 -499 21-11 426 164 K = 10 H L Fo Fc 0 0 2200-2077	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 -7 487 477 10 1 767 -740 10 3 729 636 11 -5 367 -50 12-11 714 -760 12 -6 552 491	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 -9 407 379 14-16 497 394 14 -6 451 237 16 -7 380 -157 16 0 453 453 17 -5 390 190 18 -2 479 354	12 -1 739 -749 13 0 473 483 13 2 687 -562 14 2 501 245 15-14 545 -541 16-15 428 28 16 -9 622 546	K = 13 H L Fo Fc O 3 615 -607 O 5 394 459 1 O 495 -535 1 1 520 404	
1 3 1419-1302 1 5 904 805 1 7 562 -574 1 13 695 -637 1 17 513 -331 2-14 565 586	18 0 516 -341 K = 11 H L Fo Fc 0 2 372 462 0 4 551 -555	16 1 484 276 19-12 605 522 19-11 396 -46 19-10 582 -560 K = 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2 -1 664 683 2 0 414 471 2 1 841 -751 2 3 604 733 2 5 474 -383 2 10 515 -514 2 13 453 297	0 8 722 -748 0 10 650 654 0 11 574 515 0 12 419 -370 0 15 393 219 1-10 565 -529 1 -5 550 759	H L Fo Fc 0 0 1442-1414 0 1 704 701 0 2 1004 1012 0 8 496 513 0 10 570 -582 1 5 755 665	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
3-20 443 -42 3-13 494 -625 3-11 723 778 3 -1 775 736 3 1 1102 -953 3 2 497 526	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2 - 14 421 390 2 2 665 656 2 4 668 - 438 2 7 547 435 2 15 531 - 241 3 - 3 657 - 916	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 -1 782 1011 2 5 652 591 2 7 829 -751 2 9 905 824 2 11 731 -630 3-15 462 -121	3 -1 741 975 3 0 637 -663 3 1 502 -460 3 2 686 701 3 7 479 -371 3 11 385 -109	K = 14 H L Fo Fc 0 1 653 683 0 2 469 483 0 3 531 -339 4 -7 409 -235	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 -2 552 646 3 0 705 -817 3 10 773 -657 3 12 688 649 5-16 457 -392 5 -8 402 297 5 -6 513 462	4 1 519 4/1 4 2 813 692 4 3 584 -522 4 4 966 -836 4 6 547 540 5 5 393 218 5 9 523 439	4 5 5/2 487 5 5 439 233 7-10 633 -661 7 2 464 322 7 4 614 -384 13 -5 444 -124	
6 2 577 -481 7-13 423 -456	5 -2 654 -792 5 6 420 289	6-15 405 199 6-10 445 622		

238

•

.

ų

APPENDIX III. SUPPLEMENTARY DATA FOR THE CRYSTALLOGRAPHIC ANALYSIS OF $C1_2Pd(Ph_2PCH_2)_2C_2H_2CH_2P(0)Ph_2)_2$

.

•

atom	U(1,1)	U(2,2)	U(3,3)
Pd	0.0373(4)	0.0378(4)	0.0344(4)
C11	0.048(2)	0.043(1)	0.021(1)
C12	0.048(2)	0.044(1)	0.049(2)
P1	0.043(1)	0.037(1)	0.034(2)
P2	0.036(2)	0.047(2)	0.034(2)
Р3	0.039(2)	0.041(2)	0.055(2)
P4	0.057(2)	0.047(2)	0.034(2)
01	0.061(5)	0.070(5)	0.059(5)
02	0.047(5)	0.066(5)	0.063(5)
C1	0.038(6)	0.048(7)	0.051(7)
C 2	0.035(6)	0.039(6)	0.037(6)
C 3	0.055(7)	0.037(6)	0.030(5)
C4	0.039(6)	0.035(5)	0.041(5)
C 5	0.040(6)	0.036(5)	0.051(6)
C 6	0.047(6)	0.037(6)	0.030(6)
C7	0.057(7)	0.043(6)	0.043(6)
C 8	0.043(6)	0.060(6)	0.042(6)
C 9	0.068(9)	0.064(8)	0.064(9)
C10	0.051(8)	0.054(7)	0.09(1)
C11	0.09(1)	0.076(9)	0.043(7)
C12	0.07(7)	0.086(9)	0.034(7)

.

Table I. General displacement parameter expressions

,

U(1,2)	U(1,3)	U(2,3)
0.0010(3)	0.0038(4)	0.0018(4)
-0.004(1)	0.011(1)	0.002(1)
-0.013(1)	0.009(1)	. 0.010(1)
-0.001(1)	-0.000(1)	0.010(1)
-0.006(1)	0.001(1)	-0.001(1)
0.004(1)	0.005(1)	0.007(1)
0.009(1)	0.003(1)	0.008(1)
0.016(4)	0.021(4)	0.014(4)
0.006(4)	0.011(4)	0.016(4)
-0.013(6)	-0.004(5)	0.008(6)
-0.007(5)	-0.001(5)	0.001(6)
-0.008(5)	0.002(4)	-0.003(5)
0.002(5)	-0.001(5)	0.009(5)
0.004(5)	0.010(5)	0.001(5)
0.010(5)	0.002(4)	0.003(4)
-0.011(6)	-0.007(5)	0.002(5)
0.003(5)	0.002(6)	-0.001(7)
0.011(7)	-0.015(7)	0.000(6)
0.003(6)	-0.022(7)	0.005(7)
-0.024(8)	-0.025(7)	0.015(7)
-0.034(8)	-0.013(6)	0.014(6)

Calculated and Observed Structure Factors

·

•

H	K	L	Fobs	Fcalc	SigF	н	K	L	Fobs	Fcalc	SigF	н	К	L	Fobs	Fcalc	SigF	н	K	L	Fobs	Fcalc	SigF
-	-	_				-	-	-				-	-	-				-	-	-			
0	0	2	2400	2641	14	0	6	8	457	455	12	1	2	6	285	268	12	1	5	9	273	292	10
0	0	4	4562	4610	20	0	6	10	388	411	9	1	2	7	640	615	9	1	5	10	674	653	13
Ű	0	6	3010	2703	7	0	6	12	377	353	8	1	2	8	166	198	8	1	5	11	187	169	12
~		10	1323	1454		U	4	1	914	880	10	1	2	9	325	332	9	1	5	12	544	539	13
Ň	0	10	510	545	12	U N	4	5	1525	1459	10	1	2	11	475	500	11	1	5	13	312	307	25
ň	ň	14	957	984	13	ů,	4	27	1142	1126	11	1	2	12	496	489	11	1	5	14	356	341	9
ň	ň	16	259	231	11	Ň	'	á	304	300		, i	4	13	526	507	12	1	6	0	712	671	27
ŏ	ĭ	ĩ	2419	2532	12	ň	'	11	570	552	13	1	4	14	232	205	11	1	6	1	478	470	10
Ō	ī	3	2382	2260	5	ŏ	Ŕ	10	290	271	8	1	4	15	1127	1002	9	1	6	4	980	950	.9
Ō	ī	5	2842	2515	7	ō	ă	2	489	484	11	ī	7	ĩ	225	223	5	1	2	3	645	223	10
0	1	7	2537	2415	B	ō	ā	4	699	620	13	î	3	2	1100	1014	2	1	2	Ē	545	541	11
0	1	9	813	774	10	Õ	8	6	728	720	13	ī	ž	3	820	750	17	1	6	Å.	303	310	17
0	1	11	893	828	12	0	8	8	438	471	12	1	3	4	562	638	Â	ī	ň	7	510	497	15
0	1	13	889	831	13	0	8	10	708	726	15	ī	3	5	772	790	11	ī	6	á	382	390	10
0	1	15	433	400	12	0	9	1	180	229	12	1	3	6	1063	1024	-8	ī	ĕ	9	301	286	8
0	2	0	1472	1372	5	0	9	3	439	401	10	1	3	7	383	322	9	1	6	10	341	332	10
0	2	2	1663	1760	5	0	9	5	628	641	14	1	3	8	373	426	9	1	6	11	430	428	10
~	4	4	940	1540		0	9	7	275	239	10	1	3	9	604	602	17	1	6	12	290	293	10
Ň	2	0	1003	1548	.8	U O	.9	9	598	587	13	1	3	10	257	253	18	1	6	13	253	239	24
ň	2	ີ້	200	210	11	v v	10	0	495	460	13	1	3	11	333	323	9	1	7	0	243	231	7
ň	2	12	314	302	11		10	4	305	3/8	9	Ļ	2	12	409	383	14	1	7	1	334	278	12
ŏ	2	14	628	563	15	Ň	10	ŝ	180	403	14	1	3	13	202	210	16	1	7	2	579	577	14
õ	3	ī	1368	1137	16	ŏ	iĭ	ĭ	130	143	20	1	2	16	444 204	430	11	1	4	3	352	387	15
0	3	3	671	631	7	ō	ĩĩ	3	162	188	18	1	4	15	352	200	10	1	4	4	204	400	12
0	3	5	1367	1171	8	ō	īī	5	320	329	10	î	Ā	ĭ	1128	1085	8	1	4	2	263	207	44
0	3	7	664	640	10	Õ	12	ō	286	271	12	î	4	2	394	357	8 8	Ť	÷	7	287	309	11
0	3	9	381	385	9	0	13	1	294	281	13	ī	4	3	740	808	Ā	ĩ	7	Ŕ	148	141	14
0	3	11	471	481	12	1	1	1	1061	966	17	ī	4	4	131	139	19	ī	7	ğ	476	462	12
0	3	13	478	461	12	1	1	2	942	1070	5	ī	4	5	660	631	15	ī	7	10	225	216	15
0	4	0	2369	1910	7	1	1	3	960	869	9	1	4	6	272	273	6	1	7	12	410	415	10
0	4	2	1381	1348	7	1	1	4	1111	1013	6	1	4	7	713	693	10	1	8	0	189	149	18
0	4	4	221	645	9	1	1	5	1093	1034	10	1	4	8	668	634	11	1	8	1	194	216	10
Ň	4	8	1011	5/4		1	1	6	759	729	8	1	4	9	603	644	12	1	8	2	234	212	9
ň	4	10	379	340	10	1 L	- 1		221	585	9	1	4	10	244	230	15	1	8	3	164	148	12
ň	4	12	274	226	10	1	-	0	341	940	, , ,	1	4	11	473	453	12	1	8	5	228	211	17
ŏ	4	14	234	242	12	1	÷	10	500	111	11	1	4	12	459	438	11	1	8	6	483	480	17
ŏ	5	ĩ	982	1047	8	1	1	11	249	28/	12	1	4	13	204	577	28	1	8	,7	151	134	17
0	5	3	571	540	10	î	î	12	465	220 AAA	12	1	4	15	201	200	14	Ţ	8	τĻ.	257	254	12
Ō	5	5	664	695	10	ī	ī	13	250	232	15	1	- *	15	332	333	10	1	3	1	340	345	
0	5	7	593	620	12	ī	ĩ	14	344	333	10	1	5	ĩ	1046	935	9	1	2	4	212	206	11
0	5	9	832	771	12	1	ī	15	204	192	13	ī	5	2	1014	928	21	1	å	2	193	1/1	12
0	5	11	258	253	10	ĩ	2	0	738	622	5	î	5	3	354	370	10	ī	á	- 5	296	280	13
0	5	13	159	167	16	i	2	1	1729	1612	Ŝ	ī	5	4	1305	1291	19	ī	ē	ĕ	180	168	15
0	6	0	1969	1891	9	1	2	2	1780	1682	9	1	5	5	785	792	10	ĩ	9	10	179	148	23
0	6	2	1460	1434	9	1	2	3	750	666	11	1	5	6	887	876	14	1	10	1	239	216	10
0	6	4 C	1/46	1594	.9	1	2	4	1030	998	7	1	5	7	· 368	367	9	1	10	3	526	534	13
U	D	o	828	827	11	1	2	5	1393	1350	7	1	5	8	1025	1001	11	1	10	4	370	363	11

243

•

.

ţ

нк	L	Fobs	Fcalc	SigF	н	КĽ	Fobs	Fcalc	SigF	н	K	L	Fobs	Fcalc	SigF	Н	K	L	Fobs	Fcalc	SigF
	-				-					-	-	-				-	-	-			
1 10	5	195	159	13	2	29	421	423	21	2	6	3	1076	985	11	2	13	0	194	219	20
1 10	6	194	167	15	2	2 10	442	382	11	2	6	4	634	547	11	3	1	Ō	723	656	4
1 11	0	254	257	11	2	2 11	842	863	12	2	6	5	1012	989	10	3	1	1	1378	1345	24
1 11	1	192	197	15	2	2 12	504	519	12	2	6	6 ·	363	364	9	3	1	2	2035	1924	36
1 11	2	375	356	9	2	2 13	679	659	17	2	6	7	875	860	11	3	1	3	789	723	6
1 11	3	421	413	10	2	2 14	199	197	16	2	6	8	297	302	. 8	3	1	4	798	762	7
1 11	4	175	349	13	2	2 15	405	3/4	21	2	6	.9	977	963	12	. 3	1	5	467	474	9
1 11	5	336	330	10	2	3 0	1013	1409	12	4	6	10	457	436	12	3	1	6	1018	903	10
1 12	ŏ	281	270	15	2	3 2	784	777	14	2	2	12	212	224	13	2	÷		283	518	9
1 12	ĭ	353	338	10	2	3 3	228	212	6	2	6	13	170	149	15	2	1	9	162	144	^
2 0	ž	1258	1264	7	2	3 4	732	655	8	2	7	10	440	429	14	3	î	บ้	335	352	9
20	3	758	591	6	2	3 5	249	238	ž	2	7	ĩ	178	188	-9	3	ī	12	241	221	ē
20	4	2284	2171	6	2	36	349	274	9	2	7	2	1129	1099	26	3	ī	13	417	408	10
20	5	1538	1546	8	2	37	193	186	7	2	7	3	717	734	14	3	ī	15	270	274	11
20	6	711	716	8	2	38	843	729	17	2	7	4	1053	1057	19	3	2	0	1340	1306	5
2 0	7	2553	2402	10	2	39	159	121	10	2	7	5	242	236	8	3	2	1	1442	1318	5
20	8	751	754	10	2	3 12	476	482	19	2	7	6	587	607	13	3	2	2	355	352	7
2 0	10	1089	1154	18	2	3 13	221	201	11	2	7	7	449	457	11	3	2	3	535	470	11
2 0	11	207	202	12	4	3 14	100	164	12	4	4	8	410	384	11	3	2	4	191	201	5 6
2 0	12	738	682	12	2	4 1 A 2	204 A3A	244	9	4	4	10	364	362	12	3	2	5	12/9	1259	48
2 0	13	869	832	13	2	4 7 4 7	584	459	14	2	''	11	217	220	10	2	2	6	5/5	200	3
2 0	14	240	257	10	2	4 4	462	337	11	2	2	12	262	244	11	2	2	10	267	251	12
2 Ö	15	207	196	20	2	4 5	915	838	1 9	2	8	ĩ	781	832	16	7	2	11	235	248	9
21	0	3126	3028	12	2	4 6	196	185	7	2	8	2	218	185	10	3	2	12	381	371	ğ
21	1	1454	1342	14	2	4 7	398	410	10	2	8	3	1049	1003	īī	3	2	13	206	208	17
2 1	2	1364	1499	14	2	48	413	427	19	2	8	4	380	397	9	3	2	14	523	489	16
2 1	3	769	806	6	2	49	749	665	11	2	8	5	617	635	13	3	3	1	610	687	7
2 1	4	1813	1621	16	2	4 11	210	236	10	2	8	8	377	375	16	3	3	2	582	628	9
2 1	2	959	921	9	· 2	4 12	167	155	13	2	8	9	514	459	28	3	3	3	563	601	8
2 1	5	2214	2145	7	2	4 13	220	201	11	2	8	10	316	323	10	3	3	4	668	603	11
$\frac{4}{2}$ 1	.	1102	192	6	2	4 15	474	466	13	2	8	11	484	463	12	3	3	6	739	707	9
2 1	٥ ٥	205	214	7	2	5 0	54/ 631	543	13	4	9	0	2/4	283	11	5	3	7	1351	1312	10
2 1	10	581	587	12	2	5 2	1096	070	7	2	3	4	02U 227	270	14	2	3	8	321	297	13
$\overline{2}$ $\overline{1}$	îĭ	383	356	18	2	5 3	328	290	าาั	2	q	4	659	689	10	נ ר	2	9 11	202	133	10
$\overline{2}$ $\overline{1}$	12	635	621	13	2	5 4	592	530	10	2	á	7	315	300	9	7	2	12	163	130	23
21	13	307	314	15	2	55	389	396	14	2	9	8	227	219	32	ž	3	13	597	575	12
21	14	743	707	14	2	56	257	282	8	2	9	9	245	251	12	3	3	14	186	161	14
21	15	362	342	10	2	57	315	316	8	2	9	10	389	393	13	3	3	15	373	377	11
2 2	0	1186	1095	8	2	58	856	780	26	2	10	1	317	303	9	3	4	0	1754	1710	7
2 2	1	1145	1065	8	2	59	208	179	16	2	10	2	325	314	9	3	4	1	174	190	14
2 2	2	1340	1323	26	2	5 10	292	284	8	2	10	3	436	405	16	3	4	2	863	895	8
2 2	5	1070	554	9	2	5 11	131	142	20	2	10	4	254	240	17	3	4	3	316	307	16
2 2	-+ 5	110/0	1020	7	4	514	183	158	12	2	10	5	396	361	20	3	4	4	1045	1054	8
2 2	6	578	584	12	2	5 14	449	439	10	2	10	7	211	225	13	3	4	5	293	254	7
$\frac{1}{2}$ $\frac{1}{2}$	7	766	808	25	2	6 1	813	812	10	2	11	4	140	192	10	<u>ک</u>	4	5	1040	994 797	9
2 2	8	181	141		2	6 2	702	719	10	2	11	6	290	784	11	2		Ŕ	834	202 847	, i

ł

÷

н -	к -	L -	Fobs	Fcalc	SigF 	H -	K -	L -	Fobs	Fcalc	SigF 	H -	K -	г. -	Fobs	Fcalc	SigF	H -	к -	Г _	Fobs	Fcalc	SigF
3	4	10	723	707	13	3	9	5	207	197	16	4	2	1	1289	1123	16	4	5	7	673	666	11
3	4	11	223	224	10	3	9	6	322	305	12	4	2	2	1075	1046	9	4	5	8	725	767	12
3	4	12	627	614	14	3	9	8	168	157	15	4	2	3	1141	1057	10	4	5	9	348	361	8
3	4	14	490	461	13	3	.9	9	319	309	10	4	2	4	509	563	9	4	5	10	334	327	8
3	4	15	190	181	15	3	10	1	122	77	18	4	2	5	1417	1250	14	4	5	11	317	301	8
3	2	0	531	512	10	3	10	2	421	449	13	4	2	6	1045	1039	11	4	5	12	229	233	12
2	2	1	1026	301	8	3	10	3	242	249	19	4	2	7	735	701	9	4	5	13	147	141	17
3	2	4	930	182	9	3	10	4	406	407	10	4	2	8	1070	1046	9	4	5	14	233	230	12
2	ີ ລຸ. ຮ	. 3	271	267		2	10	0	155	31/	9	4	2	.9	420	355	24	4	6	0	1169	1218	11
2	5	- T	3/1	207	10	2	10	0	333	315	10	4	4	10	291	306	8	4	6	1	865	//5	10
2	5	2	264	240	10	2	11	1	199	100	15	4	2	11	565	570	14	4	6	2	1113	1019	18
7	5	7	204	240 041	12	2	11	2	234	570	13	4	4	12	5602	502	13	4	þ	3	1286	1233	18
2	5	á	202	272	13	2	11	د ۸	144	150	10	*	4	12	209	220	44	4	Ö	4	009	024	11
2	5	ä	380	372	10	2	11	Ë	144	534	19	· 4	4	14	334	321		4	ő	2	805	/54	11
3	5	บ้	625	596	16	2	12	<u>د</u>	240	205	14	4	2	12	209	221	13	4	6	5	4/3	239	
3	ŝ	13	491	504	12	2	12	ĩ	272	203	12	*	2	ĩ	567	441 602	10	4	ĉ	<i>'</i>	/30	/28	30
ĩ	6	10	703	774	10	Å	10	5	1912	1783	12	4	2	2	460	420	14	4	2	0	4/1	900	11
3	ĕ	ĭ	217	217	7	Ā	ŏ	ĭ	1696	1517	17	Ā	7	2	420	387	74	* A	2	10	335	320	11
3	6	2	935	917	ġ	4	ō	2	2935	2940	37	Å	3	Ā	628	532	8	Ă	ĕ	11	484	494	14
3	6	3	141	126	10	4	ŏ	3	215	241	6	4	3	5	1017	869	ğ	Ă	ĕ	12	273	258	11
3	6	4	895	887	ĩŏ	4	Õ	4	426	511	8	4	3	6	338	309	á	4	ĕ	13	225	211	19 .
3	6	5	231	199	9	4	0	5	1805	1665	7	4	3	7	368	353	12	4	7	-0	614	621	11
3	6	6	714	738	11	4	0	6	1190	1153	8	4	3	8	323	259	24	4	7	ĩ	467	475	13
3	6	7	173	145	11	4	0	7	1388	1210	16	4	3	9	357	347	20	4	7	2	990	960	13
3	6	8	413	383	8	4	0	8	690	695	10	4	3	10	181	139	15	4	7	3	929	934	11
3	6	.9	153	188	14	4	0	9	. 637	721	23	4	3	11	283	242	8	4	7	4	978	905	11
3	6	10	610	580	13	4	0	10	802	754	11	4	3	12	348	369	13	4	7	5	454	487	15
3	6	11	182	203	26	4	0	11	603	612	15	4	3	14	234	214	16	4	7	6	387	384	9
2	5	12	457	454	12	4	0	12	669	655	13	4	3	15	185	190	15	4	7	7	640	613	13
3	<i>'</i>	U 1	488	409	20	4	0	13	944	935	13	4	4	0	790	766	8	4	7	8	333	353	16
2	4	1	150	130	10	4	0	14	503	482	12	4	4	1	1206	993	7	4	7	9	409	377	9
	4	2	34/	493	12	4	0	12	430	405	10	4	4	2	743	658	16	4	7	10	583	562	13
2	<i>'</i>		207	244	10	4	-	1	1120	1102	10	4	4	3	1015	895	10	4	7	11	425	417	11
7	' 7	5	233 592	559	12	4	1	12	1693	1/28	12	4	4	4	443	420	10	4	7	12	221	207	13
3	ż	7	462	475	14	Å	1	2	822	947	11	4	4	2	308	341 647		4	8	U 2	202	198	10
3	7	8	137	116	15	4	î	Ā	624	673	7	*	4	2	760	24/	11	4	0	2	202	3/9	13
3	7	11	419	426	12	4	ī	5	1656	1577	15	*	4	á	944	803/	10	4	8	2	/60	114	12
3	ġ.	ō	364	364	16	4	ĩ	ñ	1427	1339	13	4	Ā	ğ	569	504	16	4	9	ŝ	200	4// 077	12
3	8	1	447	434	12	4	ī	7	845	879	19	4	Ā	10	360	366	10	7	6	2	200	354	9
3	8	2	278	266	8	4	ī	Ŕ	930	918	Ĩá	4	Ā	12	283	314	9	Ā	ä	7	360	346	9
3	8	3	375	342	10	4	ī	9	752	705	10	4	4	13	120	139	18	Ā	Ř	Ŕ	338	352	11
3	8	4	504	508	14	. 4	1	10	252	268	10	4	5	0	179	145		4	R	9	553	520	12
3	8	5	348	380	12	4	ī	11	200	206	10	4	5	í	322	304	8	4	8	10	604	599	13
3	8	6	234	212	10	4	1	12	743	713	13	4	5	2	847	784	10	4	ã	īī	477	461	17
3	9	0	160	171	13	4	1	13	493	458	13	4	5	3	771	744	9	4	9	2	527	512	12
3	9	1	190	192	12	4	1	14	519	525	23	4	5	4	307	280	7	4	9	3	324	320	-8
3	9	3	260	249	9	4	1	15	307	297	10	4	5	5	205	200	7	4	9	4	549	553	12
3	9	4	141	139	16	4	2	0	340	63	8	4	5	6	125	168	11	4	9	5	222	207	11

1

Page 3

1

:

.

.

.

HKL	Fobs	Fcalc	SigF	н	KL	Fobs	Fcalc	SigF	HKL	Fobs	Fcalc	SigF	Н	ĸ	Fobs	Fcalc	SigF
4 9 6	264	257	10	` 	36	1305	1250	20	5 6 10	141	150	16	-				
4 9 8	252	247	11	5	3 7	107	122	12	5 6 11	480	466	13	6	0 6	0/9	033	9
4 9 9	411	392	īī	5	3 8	889	823	10	5 6 12	214	189	13	6	0 S	781	754	11
4 9 10	418	420	10	5	39	453	462	10	5 6 13	202	192	13	6	0 10	494	496	11
4 10 1	508	482	13	5	3 10	375	337	10	570	547	531	14	6	0 12	. 751	747	13
4 10 3	561	578	13	5	3 11	428	419	12	5 7 1	382	375	.9	. 6	0 14	810	747	14
4 10 4	307	416	12	5	2 12	621	3/2	10	5 / 2	605	595	12	6	0 19		153	18
4 10 6	150	146	17	5	3 14	506	461	28	574	430	404 698	11	Š	0 1/	1091	221	14
4 11 2	308	318	10	5	3 15	393	409	ĩĩ	5 7 5	339	358	12	Ğ	i ż	1014	912	6
4 11 4	263	266	12	5	40	1245	1093	11	576	193	189	11	6	ĩŝ	649	612	7
4 11 5	272	276	12	5	4 1	1439	1351	.7	57.7	543	512	12	6	1 4	367	342	9
4 12 0	226	237	14	5	4 2	715	746	11	578	335	327	.8	6	1 5	1343	1198	15
4 13 1	146	133	21	5	4 3	786	769	8	5 / 10	161	120	11	6	1 2		341	8
5 1 1	335	352	7	5	4 5	626	640	10	5 7 12	264	271	11	6	i é	418	422	10
512	1388	1265	9	5	4 6	710	722	10	5 8 3	263	236	9	6	ī	347	324	10
5 1 3	475	490	11	5	47	858	827	10	584	587	593	14	6	1 10	375	340	10
5 1 4	184	174	5	5	4 8	393	360	11	585	201	182	11	6	1 11	. 524	537	13
5 1 5	930	939	7	5	4 9	497	503	11	586	329	342	.9	6	1 12	178	169	12
517	730	720	11	5	4 10	229	239	12	5 8 8	186	188	12	6	1 13	879	823	13
5 1 8	874	848	10	5	4 12	218	216	12	5 8 10	159	160	10	6	1 19		240	11
5 1 9	680	650	11	5	4 13	493	476	20	5 8 11	195	178	30	6	2 0	3968	3833	19 4
5 1 10	210	196	9	5	4 14	255	265	11	5 9 2	471	444	īī	ē	2 i	1023	994	- <u></u> 6 0
5 1 12	402	402	15	5	50	797	752	11	593	351	329	10	6	2 2	1308	1210	6
5 1 13	215	196	11	5	5 1	516	477	10	594	374	358	9	6	2 3	1557	1400	6
5 2 0	240	241/	14	2	5 2	239	8/4	9	597	188	168	12	6	24	1179	1164	7
5 2 1	1964	1874	17	5	5 4	736	750	10	5 9 8	182	182	13	6	2 2	0 643	567	14
5 2 2	1143	1008	-6	5	5 5	748	754	12	5 10 1	382	363	16	б	2 7	472	477	11
523	866	763	7	5	56	1084	1035	10	5 10 3	513	476	17	6	2 8	655	636	21
524	185	215	6	5	57	363	337	18	5 10 4	244	234	11	6	2 9) 214	198	8
5 2 5	347	343	19	5	58	797	785	20	5 10 5	284	285	10	6	2 10	308	324	7
5 2 5	1115	593	18	5	5 9	784	732	12	5 10 6	148	113	17	6	2 11	150	109	17
528	458	439	13	5	5 10	334	344	14	5 11 1	245 434	252	12	6	2 12	598	576	14
5 2 9	341	345		5	5 12	599	556	13	5 11 3	314	295	10	6	2 14	541	511	14
5 2 10	402	387	8	5	5 13	137	149	18	5 11 4	477	456	14	ě	2 15	213	165	13
5 2 11	432	415	11	5	5 14	245	251	12	5115	207	199	15	6	3 0	501	532	8
5 2 12	168	151	13	5	6 0	134	146	12	5 12 0	265	243	17	6	3 1	611	496	7
5 2 14	101	593	13	5	6 1	679	861	12	5 12 1	350	333	20	6	3 2	644	578	8
5 2 15	316	325	11	5	67	740	*/*	10	2 1 2 0	409 2979	200	15	6	5 C C	942	506	10
5 3 0	786	747	Îĝ	5	64	268	259	7	601	870	895	10	6	3 9	202 930	762	9
531	1261	1260	7	5	65	619	608	12	6 0 2	4172	3937	55	ĕ	3 6	525	504	10
5 3 2	1597	1608	10	5	66	468	454	12	603	908	927	6	6	3 7	841	758	10
533	664	572	8	5	6 7	314	325	9	604	753	744	7	6	38	270	256	6
534 575	855	891	.8	5	68	516	476	21	6 0 5	254	211	6	6	3 9	467	480	11
2 3 5	941	800	10	5	69	322	322	9	606	1644	1635	8	6	3 11	. 560	542	16

.

Н	KL	Fobs	Fcalc	SigF	Н	K	L	Fobs	Fcalc	SigF	н	K	L	Fobs	Fcalc	SigF	н	к	L	Fobs	Fcalc	SigF
-					-	-	-				-	-	-				-	-	-			
6	3 13	487	475	11	6	8	0	230	199	9	7	2	8	499	516	13	7	5	13	323	292	16
6	3 15	146	169	18	6	- 8	1	565	565	13	7	2	9	760	759	13	7	5	14	362	333	36
6	4 0	509	473	9	6	8	2	683	667	13	7	2	10	175	161	10	7	6	0	363	328	9
6	41	725	653	8	6	8	3	690	670	18	7	2	11	346	341	10	7	6	1	460	441	9
6	42	855	707	8	6	8	4	818	785	12	7	2	12	199	214	17	7	6	2	676	697	10
6	4 3	686	646	9	6	8	5	185	193	19	7	2	13	342	328	15	7	6	3	536	538	12
6	4 4	843	697	9	6	8	6	282	258	10	7	2	14	345	351	9	7	6	4	458	461	10
6	4 5	112	83	14	6	8	7	165	159	13	7	2	15	341	312	9	7	6	5	591	557	12
6	4 6	391	362	10	6	8	8	433	440	11	2	3	0	1691	1676	12	7	6	6	648	645	23
0	4 /	410	410		6	8	10	686	681	14	7	3	1	2043	1818	18	7	6	8	390	401	10
b	4 8	459	367	10	6	8	11	209	182	14	7	3	2	1231	1166	12	7	6	9	515	492	12
P 2	4 9	202	208	.9	6	9	1	278	243	. 9	7	3	3	1299	1193	7	7	6	10	348	364	9
0	4 10	251	255	11	6	9	2	179	196	13	7	3	4	1157	1116	10	7	6	11	238	234	10
ð	4 11	301	299	. 8	6	9	3	868	879	13	7	3	5	1585	1512	8	7	6	12	425	393	11
b c	4 12	215	207	11	6	9	4	192	177	12	7	3	6	1043	1019	17	7	6	13	203	201	14
0	50	1202	11//	8	6	9	5	587	539	12	7	3	7	1156	1055	13	7	7	1	523	532	12
6	2 1	6/2	652	9	6	9	7	343	329	10	7	3	8	1079	1103	10	7	7	3	523	521	10
6	5 2	/31	673	9	6	9	8	207	214	13	7	3	9	952	935	11	7	7	4	153	139	16
0	2 3	906	887	9	6	. 9	Э	515	510	13	7	3	10	582	575	13	7	7	5	815	811	15
b b	24	683	648	10	6	10	0	223	211	20	7	3	11	477	462	12	7	7	6	392	362	9
2	2 2	1002	9/2	10	6	10	1	206	198	12	7	3	12	418	397	13	7	7	• 7	413	393	13
2	20	340	722	10	0	10	4	425	423	11		3	13	518	479	12	. 7	7	8	234	205	10
2	5 /	144	133	14	6	10	3	385	364	10		3	14	480	461	17	7	7	.9	506	504	19
2	5 0	233 650	203	12	D C	10	4	433	43/	12	4	3	12	250	242	12	7	7	11.	233	237	12
2	5 10	220	222	10	, D	10		139	131	10		4	U,	1415	1310	11		8	1	286	284	12
č	5 10	424	237	10	5	11	2	314	288	1/		4	1	1290	1202	8	7	8	2	433	421	12
ĕ	5 12	175	128	17	7	-11	0	1692	1660	24	4	4	2	1040	1140	11	4	8	2	125	550	13
ĕ	5 14	173	199	16		1	ň	972	760	23		4	2	1203	1140	11		0	2	155	109	15
ĕ	6 1	423	367	10	, ,	ī	5	1966	103	5	'	4	** E	1221	1260	3		0		154	143	10
ě	6 2	1296	1219	Ťğ	, 7	ī	จึ	514	472	7	'	Ā	ž	689	632	10	7	ä	8	238	216	14
6	6 3	240	207	11	, , , , , , , , , , , , , , , , , , , ,	ī	Ā	644	642	10	7	Ā	7	005	830	10	, ,	0	1	220	210	14
6	6 4	1011	992	10	, ,	ī	5	258	200	10	'	Ā	á	744	733	11	,	2	2	223	242	14
6	65	344	336	-9	7	ī	6	726	719	ă	7	Ā	ă	706	691	19	2	á	Ā	448	439	12
6	6 6	458	433	11	7	ī	7	112	130	11	7	A	10	379	397	17	, 7	á	6	246	212	16
6	67	751	737	12	ż	ī	à	284	274	- <u>6</u>	7	4	îĭ	474	426	15	'	á	ă	323	319	25
6	68	601	586	13	7	ī	- 9	463	434	23	7	4	12	346	332	17	7	á	ğ	219	240	13
6	69	250	227	9	7	1	10	239	245	9	7	4	13	430	435	10	7	9	10	277	275	12
6	6 10	361	344	8	7	1	11	216	194	9	7	4	14	224	202	12	7	10	-0	342	332	11
6	6 11	333	325	9	7	1	12	188	193	11	7	5	Ō	1031	1029	- 9	7	īō	2	419	371	20
6	6 12	298	300	10	7	1	13	272	288	13	7	5	ī	444	505	24	7	10	3	389	364	10
6	71	554	532	12	7	1	14	295	278	10	7	5	2	1497	1397	15	7	10	4	499	496	16
6	73	938	873	14	7	1	15	320	314	12	7	5	4	1200	1190	-9	7	10	5	401	363	10
6	74	461	477	12	7	2	0	1880	1860	9	7	5	5	686	692	22	7	10	6	267	279	11
6	75	689	679	12	7	2	1	1151	1199	6	7	5	6	554	547	12	7	10	7	188	200	15
6	76	473	476	12	7	2	2	368	265	10	7	5	8	504	454	21	7	10	8	196	181	15
6	77	385	367	9	7	2	3	1109	1046	7	7	5	9	302	283	8	7	11	Ó	304	280	10
6	79	715	690	14	7	2	4	345	368	8	7	5	10	519	493	12	7	11	2	453	444	12
6	7 10	279	257	9	7	2	5	984	950	9	7	5	11	206	198	11	7	11	3	414	393	10
6	7 11	587	565	17	7	2	7	1138	1122	18	7	5	12	421	403	10	7	11	4	451	440	11

Page 5

• .

H -	к _	L -	Fobs	Fcalc	SigF	н -	ĸ	L -	Fobs	Fcalc	SigF	H -	H	۲ -	Ľ	Fobs	Fcalc	SigF	H ~	ĸ	L -	Fobs	Fcalc	SigF
7	12	0	242	227	13	8	3	3	826	748	8	8	e	5 1	.2	417	415	10	9	1	14	173	197	15
7	12	1	251	231	13	8	3	4	569	600	9	8	7	2	0	370	385	9	9	1	15	164	165	16
8	0	0	869	770	6	8	3	5	270	254	.8	8	7		1	139	119	13	9	2	0	1149	1223	7
8	0	Ţ	1268	1192	6	8	3	6	870	849	19	8	7		2	787	821	11	9	2	1	827	795	7
8	0	4	752	395	2	8	2	0	22/	214	11	8		,	3	311	313	10	ä	2	2	1363	1283	7
Å	ň	4	164	150	é	8	2	10	326	272	12	0 8	-	,	4	730	334	12	2	2	2	1010	109	12
ã	ŏ	5	1456	1319	7	Ä	3	ii	152	158	16	Ä		,	7	248	232	21	9	2	-	294	267	13
8	ŏ	6	982	962	8	8	3	12	305	286	8	ā	7	,	8	478	469	11	ŝ	2	6	1013	983	15
8	0	7	1261	1326	15	8	3	13	260	230	10	8	7	1	9	219	217	15	9	2	7	516	506	17
8	0	8	965	892	10	8	3	14	185	193	14	8	7	1	.0	500	485	13	9	2	8	1017	1033	11
8	0	9	496	474	13	8	3	15	163	160	22	8	7	1	.1	281	277	16	9	2	9	229	223	15
8	0	10	400	354	17	8	4	0	529	564	17	. 8	7	1	.2	322	311	28	9	2	10	580	592	12
8	0	11	628	604	13	8	4	1	784	643	12	8	8	3	1	483	483	11	9	2	11 .	220	203	10
8	0	12	261	253		8	4	2	959	899	8	8	5	5	2	192	177	15	9	2	12	453	424	16
8	0	14	415	412	11	0	- 4	2	209	220	16	0	6	2	3	203	902	14	9	4	13	232	230	11
Ä	ŏ	15	409	364	14	8	Ā	5	455	368	23	0 8	2	2	27	560	542	20	2	2	14	1050	517	13
8	ō	17	273	248	12	ă	4	ĕ	900	843	ĩõ	ă	Ē	ŝ	ģ.	678	676	15	9	3	ĭ	2104	2014	2
8	1	0	3865	3605	38	8	4	7	247	223	8	8	Ē	1	ī	584	548	14	9	3	2	287	283	7
8	1	1	1064	983	7	8	4	8	716	708	20	8	9)	Õ	297	293	- 9	9	3	3	1193	1200	8
8	1	2	932	998	6	8	4	9	542	538	13	8	9)	1	197	166	22	9	3	4	551	549	15
8	1	3	256	235	6	8	4	11	563	599	12	8	9)	2	630	655	14	9	3	5	1326	1378	9
8	1	4	1015	998	17	8	4	12	285	280	9	8	9		3	344	324	9	9	3	6	495	402	11
8	1	5	141	119	7	8	4	14	275	259	11	8	9)	4	743	725	15	9	3	7	907	910	13
8	1	5	1190	1214	8	8	5	0	578	436	16	8	9		6	262	241	10	9	3	8	274	280	8
8	1	á	1016	381	16	8	2	2	4/8	202	14	8	5	5	2	183	1/9	23	. 9	3		544 707	604	12
A	1	10	385	379	15	9	5	2	743	270	10	0	0	Ś	0	243	100	16	9	2	12	266	2601	13
ă	î	ii	280	273	8	8	5	4	469	398	10	8	10	Ś	3	181	152	13	9	7	12	672	642	19
8	ī	12	· 751	757	18	8	5	5	503	495	īī	ā	ī	j l	2	304	298	10	ě	4	ĨŐ	1437	1349	Ĩ
8	1	13	202	219	19	8	5	6	319	315	8	8	10)	3	567	540	13	9	4	1	737	691	9
8	1	14	701	641	15	8	5	8	430	395	15	8	10)	4	393	378	10	9	4	2	1386	1412	8
8	1	15	282	270	15	8	5	9	244	232	9	8	10)	6	205	188	19	9	4	3	487	380	10
8	2	0	318	302	7	8	5	10	241	224	10	8	10)	8	251	240	13	9	- 4	4	1114	1113	9
8	2	1	1574	1471	6	8	5	11	178	184	13	8	11	L	2	179	192	16	9	4	5	355	371	10
8	2	3	490	477	. 8	8	2	12	298	286	14	8	11	L	3	244	228	13	9	4	6	1190	1151	10
0	2	4	409	1220	10	8	2	13	163	153	15	8	-11	-	5	260	238	12	9	4	8	714	744	12
Ä	2	7	1300	1220	20	8	6	ĩ	24 447	466	10	9	1		ĩ	415	3/3	14	9	4	10	343	540	צי
ă	2	Ŕ	112	120	12	Å	6	2	322	263	- 4	9	1	-	2	198	198	<u>د</u>		4	10	161	114	15
8	2	9	524	556	12	8	6	3	655	653	11	9	î		4	442	385	15	á	4	12	628	638	14
8	2	10	603	585	13	8	6	4	253	233	-8	9	ī		5	449	470	- 9	9	4	14	665	589	ĩŝ
8	2	11	429	387	10	8	6	5	511	518	10	9	1	L	6	263	253	6	9	5	0	254	218	11
8	2	12	547	554	29	8	6	6	286	284	8	9	1	L	7	1035	1010	16	9	5	1	165	192	8
8	2	13	752	738	14	8	6	7	122	127	15	9	נ	L	8	283	241	7	9	5	2	225	204	7
8	2	12	162	167	17	8	6	8	371	365	10	9]		9	542	583	22	. 9	5	3	1065	1066	9
A	ר	U 1	1120	898	'	8	6	10	524	501	12	9	1	1	.0	141	143	13	9	5	4	386	398	10
8	ĩ	2	649	650	, В	0 0	6	11	761	435	10	ע ה	1	L 1	.1.	100	222	20	4	2	2	239	794	14
-	-	~		0.00	- U	<u> </u>		- -		200	,		- 1			314	£10	<u>ب</u> ن		3	0	101	100	3

Page 6

•

! .

1

Н	K	L	Fobs	Fcalc	SigF	н	K	L	Fobs	Fcalc	SigF	н	K	L	Fobs	Fcalc	SigF	н	K	L	Fobs	Fcalc	SigF
-	-	-			*- - -	-	-	-				-	-	-				-	-	-			
9	5	7	1131	1109	11	9	11	3	400	379	10	10	3	5	1186	1162	9	10	7	9	446	434	12
9	5	8	181	163	11	10	0	0	654	582	7	10	3	6	664	624	10	10	7	10	341	357	Ĩ
9	5	9	636	603	13	10	0	1	2195	1973	16	10	3	7	359	350	17	10	7	īī	370	359	16
9	5	10	228	218	10	10	0	2	880	876	7	10	3	8	517	495	12	10	8	0	522	546	13
9	5	11	799	768	14	10	0	3	283	321	8	10	3	9	332	351	10	10	8	2	750	711	13
9	5	12	171	161	15	10	0	4	767	643	8	10	3	11	242	244	17	10	8	3	685	628	13
9	5	13	428	418	20	10	0	6	1316	1349	8	10	3	12	374	354	9	10	8	4	666	653	27
9	6	0	440	382	10	10	0	7	743	705	10	10	3	13	188	164	14	10	8	5	403	394	10
3	6	1	250	244	12	10	0	8	967	1018	16	10	3	14	204	205	22	10	8	6	327	346	8
2	6	4	305	329		10	0		207	184	. 5	10	4	0	941	912	8	10	8	7	416	423	10
	2		100	1035	14	10	0	11	44/ 710	225	15	10	4	1	1405	1287	8	10	8	8	301	307	9
ğ	6	5	515	535	12	10	Ň	12	112	089	20	10	4	2	4/0	415	20	10	8	.9	556	568	14
· ā	ň	ñ	369	367	10	10	ň	14	472	440	10	10	-	2	201	190	10	10	8	10	430	442	11
9	ĕ	7	199	185	10	10	ň	15	476	421	13	10	- ** 	÷	242	400	12	10	8	11	414	414	11
ē	6	8	318	351	17	10	ŏ	17	173	153	18	10	Ā	6	703	452 680	11	10	3	1	228	185	11
9	6	9	238	228	11	10	ĩ	ī	1477	1436	7	10	Ā	7	362	310	14	10	2	2	220	370	10
9	6	10	624	613	15	10	ĩ	$\hat{2}$	960	884	7	10	Ā	Ŕ	126	97	17	10	2	2	740	600	14
9	6	12	331	316	-9	10	ī	3	650	683	15	ĩŏ	4	ğ	309	307	4	10	9	4	603	605	17
9	7	0	340	297	15	10	ī	5	939	961	8	10	Á	10	324	300	Â	10	á	5	181	190	IA N
9	7	1	342	322	8	10	ī	6	922	862	9	10	4	ĩĩ	417	408	10	10	ģ	6	357	317	4 4
9	7	2	707	633	31	10	1	7	906	844	1Õ	10	4	12	367	359	Ĩ	ĩŏ	ğ	7	267	274	17
9	7	3	661	618	12	10	1	8	679	628	20	10	4	13	237	210	12	10	9	Å	361	328	9
9	7	4	300	294	15	10	1	9	502	511	11	10	5	0	106	85	12	10	9	<u>9</u>	233	257	13
9	7	7	277	293	9	10	1	10	202	181	9	10	5	1	583	562	10	10	10	Ō	197	191	13
9	7	8	325	322	. 8	10	1	11	398	376	10	10	5	3	324	266	14	10	10	1	407	376	21
9	7	.9	230	202	10	10	1	12	462	431	18	10	5	4	237	231	7	10	10	2	256	260	11
3		11	211	190	13	10	1	13	578	529	16	10	5	5	342	306	8	10	10	3	510	531	14
9	8	1	289	279	8	10	1	14	378	364	24	10	5	6	355	337	8	10	10	4	255	222	12
9	8	4	270	200	12	10	1	12	284	273	11	10	5	7	447	448	10	10	10	5	237	263	17
á	9	ر ۸	100	103	12	10	4	1	1/33	1425		10	5	8	231	203	11	10	10	6	165	135	16
á	Ř	Ē	364	205	12	10	4	1	1004	849	1	10	5	10	431	438	10	10	11	2	254	247	14
ő	Ä	ă	252	244	10	10	2	4	260	206	ć	10	2	12	44/	424	11	10	11	4	169	177	17
9	Ä	7	189	186	12	10	2	4	037	200 01 <i>1</i>	0 0	10	6	2	200	103	0	11	1	1	154	135	6
9	8	ġ	157	123	15	10	2	5	635	567	16	10	6	2	325	202	21	11	1	2	103	403	11
9	8	<u>9</u>	135	138	19	10	2	6	659	637	10	10	ĕ	Ā	104	104	16	11	1	<u>د</u>	**3	447	13
9	9	0	308	284	9	10	2	7	879	849	10	10	6	5	382	351	10	11	ī	5	386	407	10
9	9	1	599	580	12	10	2	8	853	807	15	10	6	6	260	264	8	11	î	۲ ۵	485	464	á
9	9	2	245	252	11	10	2	ĝ.	533	534	12	10	6	8	428	412	17	ii	ī	7	363	320	10
9	9	3	541	491	11	10	2	10	280	297	23	10	6	9	185	183	12	11	ī	8	501	503	14
9	9	4	283	260	9	10	2	11	423	378	10	10	6	10	330	307	8	11	ī	9	178	152	10
9	9	5	523	527	13	10	2	12	657	643	16	10	7	0	192	248	10	īī	ī	10	765	739	22
9	9	6	283	275	10	10	2	13	347	362	8	10	7	1	337	298	9	11	1	11	170	165	12
9	.9	9	268	261	11	10	2	14	262	254	11	10	7	2	422	357	11	11	1	12	348	353	8
3	10	2	689	662	15	10	2	15	355	336	10	10	7	3	515	512	11	11	1	14	555	510	13
3	10	3	197	197	13	10	3	0	583	526	9	10	7	4	426	408	11	11	2	0	561	631	32
2	10	4	202	4/3	12	10	3	Ĩ	590	526	11	10	7	5	309	285	8	11	2	1	1431	1424	7
0	11	0	293	200	10	10	5	2	974	1018	8	10	7	7	435	401	10	11	2	2	791	682	15
7	+ +	1	214	221	11	10	- 3	4	185	178	7	10	7	8	353	760	9	11	3	3	1002	1014	a

1

•

Н	K	L	Fobs	Fcalc	SigF	Н	К	L	Fobs	Fcalc	SigF	н	K	L	Fobs	Fcalc	SiaF	н	К	E.	Fobs	Fcalc	SigF
	~	-				-	-	-				-	-	-				-	-	-			
11	2		404	422	•	• • •	~	2	246	243				• •			-			_			
11	2	* 5	474	422	9	11	6	2	440 577	243	12	12	0	13	285	267	.9	12	4	.9	198	225	11
11	2	ลี	366	365	8	11	6	5	490	490	11	12	0	14	276	246	13	12	4	10	245	255	9
îî	2	7	1181	1197	13	11	ă	ă	166	156	14	12	ĩ	12	680	440 900	101	12	4	14	331	330	8
11	2	8	217	212	8	11	6	7	173	198	12	12	ī	ĭ	1202	1100	101	12	5	ĩ	412	440	10
ĩĩ	2	9	901	897	23	ii	6	8	262	263	12	12	î	2	621	619	10	12	5	2	270	250	17
11	2	10	186	186	īō	īī	6	<u>9</u>	335	323	-9	12	ī	3	180	213	6	12	5	3	497	412	12
11	2	11	437	384	10	11	6	11	524	499	13	12	1	4	172	184	7.	12	5	4	176	159	
11	2	12	176	165	13	11	7	2	338	297	8	12	1	5	632	592	12	12	5	5	641	597	33
11	2	13	650	618	13	11	7	3	279	245	9	12	1	6	419	378	27	īž	5	ē	543	518	12
11	2	15	385	373	10	11	7	4	568	545	13	12	1	7	1298	1193	23	12	5	8	251	258	9
11	3	0	2170	2035	2	11	7	6	427	412	10	12	1	8	490	519	10	12	5	9	355	327	19
11	3	1	245	219	7	11	7	8	453	436	12	12	1	9	482	466	10	12	5	10	258	261	11
11	3	2	1609	1492	8	11	7	10	478	427	13	12	1	11	204	215	10	12	5	11	471	465	12
1	1	5	231	203	.6	11	8	Ő	183	133	22	12	1	12	319	282	8	12	5	12	231	208	12
11	3	4	1222	1231	18	11	8	1	172	165	13	12	1	13	769	767	23	12	6	1	273	280	8
11	2	2	203	1674	10	11	8	4	358	362	28	12	1	15	289	262	11	12	6	2	599	577	12
11	3	7	97	76	14	11	8	27	141	321	12	12	2	U 1	2750	2548	7	12	6	4	508	458	11
ii	3	á	1462	1448	10	11	Ř	á	101	306	10	12	2	2	640	504	8	12	6	5	406	400	10 22
īī	3	9	324	284	22	îĩ	9	õ	160	185	15	12	2	2	784	729	8	12	2	7	200	247	120
11	3	10	814	812	23	īī	ē	ĭ	339	312	18	12	2	4	522	484	ä	12	ĕ	, Å	405	374	10
11	3	11	250	248	9	11	9	2	588	550	13	12	2	5	574	517	10	12	ĕ	ă	191	191	12
11	3	12	818	784	24	11	9	3	286	258	12	12	2	6	897	861	12	12	6	10	469	468	11
11	ુ	13	277	244	10	11	9	4	553	561	13	12	2	7	233	236	7	12	6	12	167	140	17
11	3`	14	515	499	14	11	9	6	460	418	16	12	2	8	478	433	18	12	7	1	423	435	16
11	4	1	1263	1268	9	11	9	7	180	135	23	12	2	9	478	455	20	12	7	2	390	388	-9
11	4	2	464	352	11	11	9	8	337	325	9	12	2	10	214	183	15	12	7	3	684	658	13
11	4	3	1160	1151	9	11	10	1	324	317	9	12	2	11	524	503	12	12	7	4	196	192	11
11	4	4	145	155	.9	11	10	3	564	510	19	12	2	12	364	360	11	12	7	5	610	608	14
11	-	2	1228	1232	10	11	10	4	251	241	25	12	2	14	406	394	10	12	7	6	169	177	13
11	4	2	440	434	10	11	10	5	519	497	23	12	3	0	204	216	6	12	7	7	226	212	10
11	4	á	1611	206	10	11	10		253	225	15	12	3	1	453	434	63	12	7	8	163	150	16
11	Ā	ă	587	530	12	11	11	2	140	149	19	14	2	4	434	357	9	12	1	.9	558	572	13
11	Ā	าก์	155	127	13	11	11	2	430	413	10	12	2	3	/0/	/5/	. 9	12	7	10	167	186	16
īī	4	ĩĩ	767	749	13	11	12	ี้เ	225	205	14	12	2	4	626	624	1/	12	6	11	459	454	11
11	4	12	231	218	11	12	-0	ō	700	773	7	12	2	5	145	167	10	12	0	ň	221	270	13
11	4	13	509	471	13	12	ō	ī	1009	943	ż	12	7	7	636	614	12	12	8	7	980	344	12
11	5	0	716	741	10	12	Ō	2	694	633	7	12	3	Ŕ	285	257	15	12	Ř	ร้	400	432	18
11	5	1	744	712	10	12	0	3	325	273	8	12	3	9	346	319		12	Ř	4	1102	1100	15
11	5	2	401	434	10	12	0	4	678	602	8	12	3	11	396	380	16	12	8	5	176	151	13
11	5	4	726	674	11	12	0	5	293	311	8	12	3	13	182	198	15	12	8	6	359	369	īõ
11	5	5	426	412	10	12	0	6	984	933	9	12	4	0	310	297	8	12	8	7	350	370	10
11	5	6	664	679	12	12	0	7	396	368	10	12	4	2	732	679	9	12	8	8	417	394	35
11	2	7	254	244	14	12	0	8	940	934	17	12	4	3	286	267	12	12	8	9	233	242	15
11	5	30	285	303	. 9	12	0	.9	420	383	32	12	4	4	1004	961	10	12	8	10	503	483	12
11	5	12	651	609	14	12	0	10	479	438	11	12	4	5	276	288	7	12	9	1	605	579	13
11	5	1	347	221	72	12	0	17	10/	410	10	12	4	6	631	591	17	12	9	2	341	340	10
TT.	0	T	341	541	Э	12	U	12	768	382	10	12	4	7	297	274	7	12	9	3	918	925	19

Page 8

:

٠

. .

.

н	ĸ	L	Fobs	Fcalc	SigF	Н	к	L	Fobs	Fcalc	SigF	Н.К	L	Fobs	Fcalc	SigF	H	K	L	Fobs	Fcalc	SigF
-	-	-				-	-	-					-				-	-	-			
12	9	4	277	285	10	13	3	9	456	486	12	13 7	5	380	364	9	14	1	í1	402	408	9
12	9	5	548	559	13	13	31	.0	185	207	11	13 7	7	342	319	10	14	1	12	473	481	15
12	9	6	351	320	9	13	31	.1	420	394	11	13 7	8	172	186	13	14	1	14	624	577	13
12	9	7	201	185	13	13	31	.2	487	491	18	13 7	9	210	197	12	14	2	ī	1365	1264	īō
12	9	8	153	132	21	13	31	.3	465	425	13	13 8	0	341	314	8	14	2	2	458	421	12
12	9	9	427	443	12	13	31	.4	267	260	12	13 8	1	256	214	10	14	2	3	931	912	16
12	10	0	137	120	19	13	4	0	835	824	9	13 8	2	180	150	12	14	2	4	318	339	12
12	10	1	169	179	16	13	4	1	980	974	9	13 8	4	443	420	īī	14	2	5	1075	998	10
12	10	2	386	397	18	13	4	2	1111	1111	21	13 8	6	281	244		14	2	ē	869	805	10
12	10	3	228	202	13	13	4	3	647	647	10	13 8	7	169	181	14	14	2	7	1261	1162	10
12	10	4	461	440	11	13	4	4	809	787	25	13 8	8	236	235	14	14	2	Ŕ	462	441	11
12	10	6	229	185	19	13	4	5	846	800	10	13 9	ō	305	270	9	14	2	ā	762	739	12
12	11	3	289	281	11	13	4	6	802	792	16	13 9	ī	396	392	10	14	2	11	372	365	ี ลี
12	12	0	337	295	11	13	4	7	604	630	12	13 9	2	239	208	11	14	2	12	358	361	9
13	1	1	395	314	8	13	4	8	548	486	iī	13 9	3	618	581	13	14	2	13	619	596	14
13	1	2	432	453	ē	13	4	9	459	420	īī	13 9	4	282	288	10	14	2	14	322	285	10
13	1	3	676	646	18	13	4 1	.0	505	490	14	13 9	5	291	289	14	14	จึ	1	1130	1058	10
13	1	4	243	256	6	13	4 1	ĩ	334	330	12	13 9	Š.	227	205	12	14	2	2	340	325	å
13	1	5	413	430	ē	13	4 1	2	524	508	13	13 9	7	197	1.61	16	14	3	2	470	345	11
13	1	6	237	229	6	13	4 1	3	287	266	10	13 9	Á	215	225	29	14	2	~	4/0	733	10.2
13	ĩ	7	637	597	11	13	5	0	491	486	11	13 10	Ň	202	245	10	14	2	-	300	734	10 0
13	ī	8	182	182	-9	13	š	ĭ	365	392	11	13 10	ĩ	293	240	10	14	2	2	222	3/3	10.
13	ĩ	9	520	513	19	13	5	2	436	446	10	13 10	5	207	252	10	14	2	7	214	360	13
13	ī	10	136	155	14	13	ž	ž	479	490	13	13 10	2	354	302	12	14	2		214-	189	10
13	ĩ	ii -	127	142	17	13	5	4	202	201	10	13 10		541	504	14	14	2	8	160	359	3
13	ĩ	13	227	222	11	13	š	5	1096	1080	11	13 10	ž	170	101	17	14	2	10	200	129	12
13	ī	14	178	192	15	13	5	ē.	418	375	15	13 11	Ň	216	102	14	14	3	10	303	272	
13	2	Ō	1493	1412	-5	13	5	7	400	401	13	13 11	ž	185	165	20	14	7	12	404	417	11
13	2	1	675	675	8	13	5	R	317	322	13	14 0	ี้เ	912	917	15	14	Ā	2	447	410	
13	2	2	714	744	15	13	5	9	753	720	31	14 0	2	301	256	13	14	Ā	2	443	414	
13	2	3	371	380	-9	13	51	ō	224	184	10	14 ŏ	3	423	357	10	14	Ā	Ē	483	459	12
13	2	4	434	434	10	13	51	1	502	478	14	14 0	ā	1032	920	Ĩ	14	Ā	č	196	170	12
13	2	5	732	761	10	13	51	2	257	259	14	14 0	ŝ	475	497	11	14	7	2	240	217	13
13	2	6	1018	981	ĩõ	13	51	3	260	245	17	14 0	7	1028	1070	10	14	Ā	á	194	190	11
13	2	7	543	506	12	13	6	ō	393	423	10	14 0	ģ	407	303	22	14	7	ä	104	221	10
13	2	8	886	848	īī	13	6	ĩ	355	376	Â	14 0	10	627	619	13	14	Ā	10	335	341	10
13	2	9	384	374	- 9	13	6	2	374	365	15	14 0	11	415	412	10	14	4	11	567	207	13
13	2	10	377	378	13	13	6	3	257	257	Ř	14 0	12	619	586	16	14	Ā	12	204	200	10
13	2	12	411	387	10	13	ĕ	Ā	382	385	10	14 0	12	799	762	14	14	7	12	274	233	10
13	2	13	324	318	12	13	6	ŝ	450	419	15	14 1	10	2379	2277	169	14	Ē	12	500	240 507	11
13	2	14	393	365	11	13	ĕ	6	421	412	12	14 1	ĩ	2275	2277	105	14	5	2	350	307	11
13	3	0	1064	1081	17	12	ĕ	7	307	295	17	14 1	5	202	463	10	14	2	4	460	420	10
13	3	ĩ	2140	2058	13	13	ĕ	á.	526	509	13	14 1	2	873	695	10	14	5	3	543	472	12
13	3	2	1234	1139		13	6	Ğ.	239	245	10	14 1	~	442	490	10	14	5	÷.	420	416	12
13	3	3	715	675	ă	13	้ล้า	ñ	371	370	10	14 1	Ē	446	400	10	14	5	0	447	410	11
13	3	4	504	503	10	13	61	2	409	383	10	14 1	2	1099	1019	. 10	14	5	0	160	332	10
13	3	5	1303	1283	9	13	7	1	508	513	11	ב דב ב י 1 <i>4</i> ו	7	1020	1010	14	14	5	30	202	104	12
13	3	6	696	714	10	17	7	5	262	378	4	14 1	°	200	500	20	14	5	10	202	194	14
13	3	7	974	933	ĩĩ	13	ż	รั	302	271	Å	14 1	0	203	261	17	14	2	10	70/	203	14
13	Ĩ	Å	756	766	17	12	÷	1	147	120	14	14 1	3	223	207	1/	14	5	12	344	328	9
			100	100	± 1	13		-1	14/	170	14	14 1	10	.140	146	£Ι	14	6	υ	266	251	7

1

ŧ

H -	ĸ	L	Fobs	Fcalc	SigF	н	K	L	Fobs	Fcalc	SigF	н	K	L	Fobs	Fcalc	SigF	н	K	L	Fobs	Fcalc	SigF
	-	-					_						_	_				-	-	-			
14	6	1	417	449	12	15	2	2	997	928	9	15	5	10	293	287	. 10	16	0	5	626	589	10
14	b b	3	190	186	10	15	2	3	340	341	9	15	5	11	425	446	11	16	0	6	966	976	13
14	2	4	210	186	11	15	2	4	467	499	16	15	5	12	263	250	17	16	0	7	925	934	18
14	2	2	204	221	8	15	4	2	936	909	10	15	6	0	567	602	25	16	0	8	815	785	11
14	2	7	234	241	12	15	4	7	/69	/35	11	15	6	1	163	169	11	16	0	.9	550	509 ·	29
14	6	Ŕ	397	382	10	15	2	`	741	705	12	15	2	2	308	295	17	10	0	10	393	367	.9
14	ĕ	ă	288	310	10	15	2	ä	540	105	12	15	6	2	200	230		10	U	11	384	386	10
14	ĕ	10	182	192	13	15	2	10	170	155	22	15	2	-	232	328	10	10	v v	12	633	626	15
14	6	īī	224	214	13	15	2	12	444	448	11	15	Ä	6	219	209	10	16	Ň	14	441 562	429	15
14	7	Ō	197	190	ii	15	2	13	232	198	12	15	ĕ	7	187	178	20	16	ĭ	17	902	925	13
14	7	1	253	267	10	15	2	14	392	374	10	· 15	6	á	199	186	18	16	Ť	2	831	850	9
14	7	2	557	516	13	15	3	Ō	738	747	10	15	6	10	312	297	12	16	î	3	165	211	10
14	7	4	780	753	13	15	3	1	1381	1403	31	15	6	12	231	260	14	16	ī	4	242	228	7
14	7	5	123	89	17	15	3	2	800	789	10	15	7	0	439	334	22	16	ī	5	810	766	10
14	7	6	278	271	9	15	3	3	1225	1256	9	15	7	1	227	194	10	16	ī	6	997	932	10
14	7	7	411	374	11	15	3	4	352	364	9	15	7	2	119	135	17	16	1	7	596	597	23
14	7	8	415	408	10	15	3	5	1043	1008	10	15	7	3	630	612	13	16	1	8	506	516	11
14	7	9	134	139	18	15	3	6	612	613	12	15	7	5	184	183	24	16	1	9	336	338	13
14	7	10	538	534	14	15	3	7	1281	1259	17	15	7	6	211	192	11	16	1	10	288	267	12
14	ğ	1	537	525	12	15	3	8	762	717	27	15	7	7	357	365	16	16	1	11	394	380	10
14	0	2	191	185	12	15	3	.9	507	526	17	15	7	.9	354	317	11	16	1	12	644	626	25 N
14	8	5	963	865	13	15	2	10	430	385	10	15	'	10	2/4	250	11	16	Ť	13	576	545	13 2
14	Ă	7	367	370	8	15	2	12	203	296	10	15	'	11	204	223	12	16	1	14	266	270	19
14	Ā	ġ	726	677	21	15	3	12	444	447	17	15	0		203	101	15	10	2	1	1400	241	12
14	ē	ō	465	469	ĩī	15	4	Ĩ	1187	1155	Ťá	15	Ā	â	223	227	12	16	2	2	1405 A19	905	9
14	9	2	683	675	16	15	4	ī	546	587	11	15	ă	4	235	226	11	16	2	ร้	255	293	8
14	9	4	676	640	15	15	4	2	935	919	10	15	Ř	6	189	178	14	16	2	4	456	474	11
14	9	6	342	333	10	15	4	3	544	506	11	15	8	7	213	194	12	16	2	ŝ	826	767	10
14	9	8	392	358	10	15	4	4	690	679	11	15	9	1	413	377	13	16	2	6	638	594	īī
14	10	1	250	232	17	15	4	5	928	965	23	15	9	2	159	125	15	16	2	7	524	470	11
14	10	3	379	369	9	15	4	6	850	875	11	15	9	3	320	325	9	16	2	8	363	335	9
14	10	5	389	354	9	15	4	7	291	275	8	15	9	4	425	402	10	16	2	10	179	181	12
14	12	1	175	181	19	15	4	8	587	604	13	15	9	5	364	337	9	16	2	11	353	316	20
15	1	0	1085	1207	80	15	4	9	560	547	16	15	.9	6	220	253	13	16	2	12	454	441	20
15	1	1	511	414	9	15	4	10	600	555	14	15	9	7	187	183	21	16	2	13	254	260	11
15	÷	4	607	5/3		15	4	11	229	213	11	15	9	8	228	209	13	16	3	1	585	628	14
15	1	2	3/1	303	12	15	4	12	419	384		15	10	0	229	214	13	16	3	2	291	263	11
15	1	7	434	333	14	15	- 44 E	13	130	191	14	15	10	2	445	434	12	16	3	3	400	397	10
15	1	Ŕ	113	122	14	15	2	υ	434	383	10	15	10	3	267	225	12	16	3	5	685	644	11
15	î	ğ	415	418	10	15	5	2	699	526 736	10	15	10	4	405	3/3	34	16	3	6	260	618	12
15	ī	10	406	418	10	15	5	จึ	585	605	12	15	11	0	410	267	24	16	3	0	200	102	3
15	ī	ĩĩ	155	162	23	15	5	4	524	459	11	15	11	ĩ	210	192	14	16	2	9 11	208	201	10
15	ī	12	228	178	īī	ĩś	5	5	412	441	ii	16	10	ō	793	764		16	2	12	464	457	12
15	1	13	292	282	10	15	5	6	232	192		16	ň	ĩ	1544	1438	á	16	7	17	202	197	19
15	1	14	223	230	13	15	5	7	650	589	13	16	ŏ	2	794	808	13	16	4	10	443	413	28
15	2	0	829	922	105	15	5	8	328	328	14	16	ŏ	3	759	741	16	16	4	ž	186	149	8
15	2	1	700	715	23	15	5	9	370	346	8	16	Ō	4	439	417	11	16	4	3	638	582	11

Н	K	L	Fobs	Fcalc	SigF	н	K	L	Fobs	Fcalc	SigF	н	K	L	Fobs	Fcalc	SigF	н	K	L	Fobs	Fcalc	SigF
-	-	-				-	-	-				-	-	-				-	-	-			
16	4	4	304	268	7	16	9	4	388	361	11	17	4	11	534	501	14	18	0	5	559	583	11
16	4	5	409	402	9	16	9	5	434	399	11	17	4	13	473	448	11	18	0	6	804	818	14
16	4	- 6	685	681	26	16	9	6	156	144	17	17	5	0	640	594	12	18	0	7	361	313	
16	4	8	228	239	23	16	10	0	163	165	17	17	5	2	735	749	13	18	ō	8	572	505	าจั
16	4	10	267	256	9	16	10	1	243	255	12	17	5	3	348	358		18	Ő	ā	474	467	12
16	4	12	349	344	14	16	10	2	247	255	14	17	5	4	915	902	11	18	ň	10	591	593	14
16	5	0	803	760	11	16	10	4	329	323	10	17	5	ŝ	229	221	-9	18	ŏ	11	398	372	
16	5	1	417	437	11	16	11	0	217	198	14	17	5	6	518	496	12	18	ō	12	666	605	15
16	5	2	438	402	11	16	11	1	183	145	16	17	5	7	301	284	Ā	18	ō	าร	483	442	11
16	5	3	118	131	14	17	1	0	488	466	24	17	ŝ	ġ.	567	529	34	18	ĩ	ĩ	1289	1286	12
16	5	4	509	534	11	17	1	1	514	502	12	17	ŝ	9	314	310	8	18	ĩ	2	590	595	10
16	5	5	530	486	12	17	1	2	423	363	12	17	5	10	457	466	11	18	ĩ	จั	523	568	12
16	5	6	267	258	11	17	1	3	174	187	10	17	5	12	344	349	11	18	î	4	371	371	Ĩ
16	5	7	241	214	9	17	1	4	468	495	10	17	6	0	160	130	12	18	ĩ	5	860	917	10
16	5	8	239	197	10	17	1	5	471	440	īī	17	Ā	ĩ	538	504	12	18	ĩ	6	460	440	11
16	5	10	197	205	12	17	ī	6	279	276		17	6	2	196	173	11	18	î	7	1131	1064	11
16	6	1	482	454	11	17	1	7	530	541	18	17	6	3	885	887	12	19	î	Å	430	435	15
16	6	3	397	382	13	17	1	8	501	474	12	17	6	4	356	369	10	18	ĩ	ă	489	473	12
16	6	4	301	283	9	17	1	9	369	372	21	17	ē	Š	298	294	Ā	18	ĩ	10	260	270	Ĩ
16	6	5	288	272	8	17	1	11	261	260	9	17	6	6	225	247	10	18	ĩ	11	471	448	12 12
16	6	6	328	310	8	17	1	12	253	223	13	17	6	7	596	574	20	18	ĩ	12	399	387	10.0
16	6	7	513	487	13	17	2	1	1143	1152	16	17	6	ġ	286	256	-ğ	18	î	13	522	516	12
16	6	8	481	427	18	17	2	2	407	421	9	17	6	10	289	290	15	18	2	2	723	727	10
16	6	9	427	423	11	17	2	3	589	629	10	17	6	īī	435	423	22	18	2	ĩ	525	486	11
16	6	10	388	389	15	17	2	5	610	600	16	17	7	-ī	376	352	10	18	2	ă	578	578	11
16	6	11	241	244	12	17	2	6	263	238	8	17	7	2	326	262	8	18	2	5	382	338	10
16	7	1	271	255	10	17	2	7	927	894	12	17	7	3	251	227	17	18	2	Ā	1057	1022	22
16	7	2	391	363	13	17	2	ġ	390	363	12	17	7	4	388	389	īi	18	2	7	231	206	Ĩ
16	7	3	651	595	21	17	2	10	145	135	14	17	7	5	369	360	10	18	2	Å	719	684	13
16	7	4	452	413	11	17	2	11	347	337	8	17	7	6	348	349	Ĩġ	18	2	ä	423	428	Ĩ
16	7	5	391	374	10	17	2	13	382	356	10	17	7	7	261	265	10	18	2	10	514	496	าร์
16	7	6	335	306	10	17	3	0	1279	1282	25	17	7	Å	194	192	13	10	2	11	337	316	13
16	7	7	302	278	- 9	17	3	2	1096	1049	10	17	7	ă	271	256	11	. 10	5	12	281	300	10
16	7	8	191	209	13	17	3	4	609	566	īī	17	7	10	266	228	11	18	ñ	17	442	472	10
16	7	9	356	345	14	17	3	6	1210	1183	ĩĩ	17	Å	1	140	147	15	18	1	2	204	228	Ĩ
16	7	10	469	462	18	17	Ĩ	7	223	221	10	17	ă	2	305	302	9	18	3	4	204	219	8
16	8	0	322	299	13	17	3	8	711	723	22	17	ā	5	236	224	11	18	1	5	361	361	10
16	8	1	375	363	9	17	3	9	358	381	10	17	ā	6	274	262	11	18	ă	ĥ	356	384	
16	8	2	703	674	22	17	3	10	434	413	12	17	Ā	Ā	216	200	13	18	ž	7	444	410	11
16	8	3	488	457	13	17	3	11	327	319	-9	17	ğ	õ	210	197	12	18	7	Ŕ	204	197	10
16	8	4	591	557	14	17	3	12	487	463	23	17	à	ĩ	190	187	19	18	1	ä	445	434	10
16	8	5	213	229	23	17	3	13	226	214	13	17	á	2	381	357	10	18	7	10	779	216	10
16	8	6	307	289	9	17	4	Õ	136	119	12	17	á	7	138	134	20	18	7	11	267	253	10
16	8	7	144	133	22	17	4	ī	897	905	17	17	10	í	306	261	15	10	2	12	207	233	25
16	8	8	244	227	12	17	Ā	â	887	848	13	17	10	2	360	340	10	10	~	14	275	212	25
16	8	9	276	267	16	17	4	4	296	324	13	19	10	5	1365	1510	15	10	4	4	617	612	12
16	9	0	174	158	20	17	4	5	486	520	26	10	ň	ĩ	926	975	15	10	*	2	405	34E	14
16	9	1	446	417	11	17	4	7	1053	1019	12	10	ň	2	170	170	12	10	4	4	403 604	343	10
16	9	2	186	185	13	17	4	8	225	210	ĩõ	19	ň	â	516	487	11	10	4	Ê	700	200	13
16	9	3	501	487	n	17	4	9	481	462	13	18	ň	4	192	202		10	4	7	200	270	0
							•	-			÷				174	402	,	10	- 4		34/	1 14	9

٠

.

.

i.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	н -	к -	L -	Fobs	Fcalc	SigF	н -	к -	L -	Fobs	Fcalc	SigF	н -	K -	L _	Fobs	Fcalc	SigF	н -	ĸ	L -	Fobs	Fcalc	SigF
	18	4	8	425	411	11	19	1	2	608	613	11	19	5	7	541	536	12	20	1	8	708	702	13
	18	4	9	382	350	10	19	1	3	251	258	6	19	5	8	366	315	12	20	ī	10	441	415	18
	18	4	10	191	201	12	19	1	4	136	129	11	19	5	9	436	445	11	20	1	11	185	187	23
	18	4	11	173	174	15	19	1	5	449	406	11	19	5	10	146	147	17	20	1	12	346	334	15
18 5 3 358 10 19 1 7 332 340 9 19 6 1 335 347 9 20 2 1 993 906 6 6 18 5 6 202 2 202 2 202 2 205 22 205 22 205 22 205 22 205 237 206 10 11 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 117 116	18	4	12	349	341	19	19	1	6	361	322	9	19	5	11	349	344	11	20	1	13	241	230	12
16 5 4 312 1 1 <th1< th=""> <th1< th=""></th1<></th1<>	18	5	3	358	358	10	19	1	7	332	340	9	19	6	1	335	347	9	20	2	1	993	908	64
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	2	4	512	290		19	1	8	207	243	10	19	6	2	841	831	32	20	2	2	265	232	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	2	2	214	102	19	19	- 1	10	134	118	15	19	6	4	379	397	9	20	2	3	774	796	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	5	7	150	140	14	19	1	12	190	100	14	10	5	2	244	207	29	20	2	4	248	217	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	5	9	541	533	31	19	î	12	216	204	13	19	6	8	312	222	9	20	2	2	2/3	220	30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	š	11	159	200	17	19	2	10	643	643	39	19	6	ğ	243	225	12	20	2	7	237	220 695	18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	5	12	163	155	ī7	19	2	2	866	838	17	19	ĕ	10	290	276	27	20	5	Ŕ	297	292	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	6	0	283	276	8	19	2	3	192	179	8.	19	7	0	424	434	11	20	2	ă	188	166	15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	6	·1	193	186	22	19	2	4	353	353	9	19	7	i	311	293	10	20	2	ñ	413	410	12
	18	6	2	557	479	25	19	2	5	192	177	10	19	7	2	554	498	13	20	2	13	353	331	16
18 6 4 635 624 16 19 2 7 220 217 10 19 7 4 155 165 21 20 3 4 19 391 11 18 6 7 378 347 11 19 2 5 268 487 11 19 7 8 216 203 17 20 3 6 294 278 13 13 16 16 201 17 10 19 7 9 185 188 10 20 3 7 176 185 227 10 19 8 1 253 10 20 3 9 180 207 23 9 180 15 266 171 19 3 266 17 19 3 466 15 19 8 245 222 12 20 4 4 4562 512 13 18 17 267 233 247 12 10 11 19	18	6	3	337	328	8	19	2	6	800	769	12	19	7	3	159	117	14	20	3	2	572	513	14
18 6 6 209 189 18 19 2 8 538 497 11 19 7 5 267 268 10 20 3 4 532 514 12 18 6 8 3323 326 9 19 2 12 311 299 10 19 7 9 185 138 19 20 3 7 176 185 22 10 20 3 7 176 185 22 12 11 19 7 9 185 138 19 20 3 7 176 185 22 12 10 117 12 27 18 7 335 313 8 19 3 3 226 201 13 20 3 11 19 9 3 226 201 13 20 11 1423 532 514 13 11 19 9 220 14 14 20 20 14 14	18	6	4	635	624	16	19	2	7	220	217	10	19	7	4	155	165	21	20	3	3	419	391	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	6	5	209	189	18	19	2	8	538	497	11	19	7	5	267	268	10	20	3	4	532	514	12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	6		378	347	11	19	2	10	207	190	11	19	7	8	216	203	17	20	3	6	294	278	13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	6	ä	323	320	10	10	2	12	311	299	10	19	7	9	185	138	19	20	3	7	176	185	22 iš
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	Ĕ	10	401	385	13	19	2	ň	603	760	4/	19	8	7	208	231	10	20	3	8	182	1/1	12 ₽
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	7	ĩ	335	313	, R	19	7	2	528	486	15	19	0	5	245	107	12	20	2	30	180	207	23
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	7	2	298	286	17	19	3	3	678	608	24	19	ä	3	245	201	12	20	2	11	196	165	13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	7	3	651	650	14	19	3	4	513	541	11	19	9	4	261	244	12	20	4	ī	423	529	11
18 7 5 417 426 11 19 3 6 226 24 5 8 19 10 2 200 196 15 20 4 5 633 560 18 18 7 8 166 171 16 19 3 8 468 467 12 20 0 1 1227 1212 9 20 4 7 179 168 18 18 7 0 20 19 3 10 118 122 17 20 0 3 878 790 10 20 4 9 311 308 9 18 8 1 169 203 13 19 3 12 179 194 25 20 0 4 350 10 20 4 11 160 160 160 16 16 16 16 16 16 12 10 0 6 455 435 18 20 5 <t< td=""><td>18</td><td>7</td><td>4</td><td>291</td><td>259</td><td>9</td><td>19</td><td>3</td><td>5</td><td>546</td><td>540</td><td>īī</td><td>19</td><td>9</td><td>6</td><td>257</td><td>239</td><td>12</td><td>20</td><td>4</td><td>4</td><td>562</td><td>512</td><td>13</td></t<>	18	7	4	291	259	9	19	3	5	546	540	īī	19	9	6	257	239	12	20	4	4	562	512	13
18 7 7 267 278 27 19 3 7 879 865 12 19 11 1 222 200 15 20 4 6 248 263 9 18 7 9 496 502 10 19 3 9 455 430 14 20 0 2 233 247 7 20 4 8 209 229 17 18 7 10 211 210 20 19 3 10 118 122 17 20 0 3 878 790 10 20 4 9 311 308 9 18 8 1 169 203 13 19 3 12 179 194 25 20 0 6 455 435 18 20 5 0 444 396 29 20 5 3 301 279 8 18 3 20 5 3 301 279 <	18	7	5	417	426	11	19	3	6	286	245	8	19	10	2	200	196	15	20	4	5	633	560	18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	7	7	267	278	27	19	3	7	879	865	12	19	11	1	222	200	15	20	4	6	248	263	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	4	8	166	171	16	19	3	8	468	467	12	20	0	1	1227	1212	9	20	4	7	179	168	18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	4	10	490	202	10	19	5	.9	455	430	14	20	0	2	233	247	1	20	4	8	209	229	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10		10	500	210	20	10	3	10	118	122	17	20	0	3	878	790	10	20	4	.9	311	308	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	8	ĩ	169	40/	12	10	3	11	285	295	20	20	0	4	382	350	10	20	4	10	436	415	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	Ā	2	620	609	14	19	4	12	1002	1006	25	20	0	2	465	940 475	11	20	4	11	160	100	16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	ā	3	209	202	18	19	4	2	734	696	11	20	Ň	7	1416	433	11	20	2	2	444	370	29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	8	4	734	715	15	19	4	- Ĩ	623	603	13	20	ŏ	Ŕ	245	253	19	20	5	4	301	279	20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	8	5	194	180	13	19	4	5	478	501	12	20	ŏ	9	681	675	14	20	5	4	483	457	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	8	6	393	357	17	19	4	6	646	647	13	20	Õ	10	472	419	13	20	5	5	211	214	îī
18 8 484 440 16 19 4 8 746 684 13 20 0 12 392 415 11 20 5 8 442 435 10 18 9 1 257 287 26 19 4 9 297 294 9 20 0 13 663 634 36 20 5 9 284 296 16 18 9 3 526 487 12 19 4 10 320 309 8 20 1 0 1595 1654 93 20 5 10 168 154 16 18 9 4 321 286 10 19 4 12 486 469 19 20 1 1 596 573 39 20 6 1 493 520 12 18 9 6 241 232 16 19 5 1 852 828 36 20	18	8	7	196	187	14	19	4	7	260	251	23	20	0	11	383	380	10	20	5	7	273	270	9
18 9 1 257 287 26 19 4 9 297 294 9 20 0 13 663 634 36 20 5 9 284 296 16 18 9 3 526 487 12 19 4 10 320 309 8 20 1 0 1595 1654 93 20 5 10 168 154 16 18 9 3 363 10 19 4 12 486 469 19 20 1 1 596 573 39 20 6 0 235 252 10 18 9 5 394 363 10 19 5 0 246 264 13 20 1 2 767 735 10 20 6 3 662 628 13 18 10 1 250 272 18 19 5 2 458 473 21 20	18	8	8	484	440	16	19	4	8	746	684	13	20	0	12	392	415	11	20	5	8	442	435	10
18 9 3 526 487 12 19 4 10 320 309 8 20 1 0 1595 1654 93 20 5 10 168 154 16 18 9 4 321 286 10 19 4 12 486 469 19 20 1 1 596 573 39 20 6 0 235 252 10 18 9 5 394 363 10 19 5 0 246 264 13 20 1 2 767 735 10 20 6 1 493 520 12 18 9 6 241 232 16 19 5 2 458 473 21 20 1 3 190 166 11 20 6 3 662 628 13 18 10 2 20 274 20 1 4 623 616 25 20	18	9	1	257	287	26	19	4	9	297	294	9	20	0	13	663	634	36	20	5	9	284	296	16
18 9 4 321 286 10 19 4 12 486 469 19 20 1 1 596 573 39 20 6 0 235 252 10 18 9 5 394 363 10 19 5 0 246 264 13 20 1 2 767 735 10 20 6 1 493 520 12 18 9 6 241 232 16 19 5 1 852 828 36 20 1 3 190 166 11 20 6 3 662 628 13 18 10 1 250 272 18 19 5 3 844 852 12 20 1 4 623 616 25 20 6 5 521 537 13 18 10 3 274 269 12 19 5 6422 580 16 20	18	9	3	526	487	12	19	4	10	320	309	8	20	1	0	1595	1654	93	20	5	10	168	154	16
18 9 6 241 232 16 19 5 0 246 264 13 20 1 2 767 735 10 20 6 1 493 520 12 18 9 6 241 232 16 19 5 1 852 828 36 20 1 3 190 166 11 20 6 3 662 628 13 18 10 250 272 18 19 5 2 458 473 21 20 1 4 623 616 25 20 6 5 521 537 13 18 10 3 274 269 12 19 5 642 580 16 20 1 5 426 382 17 20 6 6 168 159 16 18 10 230 234 18 19 5 6 622 580 16 20 1 7	10	3	4 5	341	266	10	19	4	12	486	469	19	20	1	1	596	573	39	20	6	0	235	252	.10
18 10 1250 272 18 19 5 1 625 626 56 20 1 3 190 166 11 20 6 3 662 628 13 18 10 1 250 272 18 19 5 2 458 473 21 20 1 4 623 616 25 20 6 5 521 537 13 18 10 3 274 269 12 19 5 3 844 852 12 20 1 5 426 382 17 20 6 6 168 159 16 18 10 230 234 18 19 5 6 22 580 16 20 1 6 964 957 11 20 6 7 452 14 19 1 700 691 18 19 5 6 615 14 20 1 7 183 199	18	9	6	394 241	202	16	10	5	0 1	246	264	13	20	1	2	767	735	10	20	6	1	493	520	12
18 10 3 274 269 12 19 5 3 844 852 12 20 1 5 426 382 17 20 6 5 521 537 13 18 10 3 274 269 12 19 5 3 844 852 12 20 1 5 426 382 17 20 6 6 168 159 16 18 10 230 234 18 19 5 622 580 16 20 1 6 964 957 11 20 6 7 452 14 19 1 700 691 18 19 5 6 615 14 20 1 7 183 199 11 20 6 8 273 281 11	18	าด์	ĭ	250	272	19	19	ວ ຂ	2	002	472	30	20	1	5	120	166	11	20	6	3	662	628	13
18 11 0 230 234 18 19 5 5 622 580 16 20 1 5 426 382 17 20 6 6 159 16 18 11 0 234 18 19 5 5 622 580 16 20 1 6 964 957 11 20 6 7 452 14 19 1 700 691 18 19 5 6 615 14 20 1 7 183 199 11 20 6 8 273 281 11	18	ĩõ	3	274	269	12	10	5	4	400	4/3	41 12	20	1	4	623	616	25	20	6	5	521	537	13
19 1 1 700 691 18 19 5 6 637 615 14 20 1 7 183 199 11 20 6 8 273 281 11	ĩē	īĭ	õ	230	234	18	19	5	5	622	580	16	20	1	5	420	382	11	20	6	5	168	123	16
	19	1	1	700	691	18	19	5	6	637	615	14	20	î	7	183	199	11	20	6	Ŕ	772	281	11

Page 12

.

.

Н -	K -	L -	Fobs	Fcalc	SigF	н -	к -	L -	Fobs	Fcalc	SigF	н -	K -	L -	Fobs	Fcalc	SigF	н -	К -	L _	Fobs	Fcalc	SigF
20	6	9	671	635	17	21	4	0	363	369	19	22	0	4	846	820	11	22	5	4	518	480	12
20	6	10	209	194	14	21	4	1	358	466	11	22	0	5	609	605	13	22	5	5	214	228	11
20	7	0	453	401	12	21	4	3	300	323	8	22	0	6	866	851	12	22	5	6	152	160	15
20	7	1	255	256	9	21	4	4	417	412	10	22	0	7	397	398	10	22	5	7	405	361	10
20	7	2	621	608	15	21	4	5	579	543	14	22	0	8	714	668	13	22	5	9	396	374	12
20	7	4	788	171	13	21	4	6	224	226	10	22	0	.9	352	317	.8	22	5	10	244	237	27
20	'	0	400	4/3	12	21	4		322	325		44	U	10	294	269	1/	22	6	0	790	749	16
20	Å	0	154	128	15	21	4	0	400	399	10	22	U A	11	3/6	546	12	22	6	2	562	607	13
20	ă	ĭ	575	552	13	21	Ā	10	314	294	10	22	ĭ	12	1034	977	11	22	Š	<u>ح</u>	421	530	14
20	8	3	703	709	18	21	4	11	219	205	19	22	î	2	651	675	11	22	6	Ā	463	497	17
20	Ē	5	472	431	12	21	5	ō	451	498	12	22	î	3	389	423	10	22	6	7	229	225	12
20	8	6	136	150	19	21	5	1	534	518	32	22	ī	4	288	256	16	22	6	ė.	508	469	13
20	9	0	258	247	11	21	5	2	881	843	14	22	1	5	926	865	11	22	6	9	305	308	10
20	9	2	380	359	9	21	5	3	470	473	13	22	1	6	584	580	14	22	7	0	238	205	10
20	9	4	533	472	13	21	5	4	625	626	14	22	1	7	700	693	41	22	7	1	652	615	15
20	.9	5	187	171	15	21	5	5	521	485	12	22	1	8	287	296	9	22	7	2	317	333	12
20	11	1	1/4	130	10	21	5	6	384	351	11	22	1	.9	504	470	12	22	7	3	762	740	14
21	1	2	212	270	12	21	2	6	300	330	12	22	1	10	265	248		22	7	4	263	262	10
21	1	4	522	489	12	21	5	8	229	155	13	22	1	12	209	245	11	22	4	2	492	405	12
21	i	5	339	337	7	21	5	10	209	230	13	22	2	1	525 877	910	13 62	22	4	7	346	200	15
21	ī	6	537	555	13	21	5	11	270	252	11	22	2	2	368	378	9	22	''	é	267	245	12 N
21	1	7	179	171	15	21	6	ō	295	334	18	22	2	3	155	161	าา้	22	Ŕ	õ	207	282	10 G
21	1	8	384	355	15	21	6	1	430	419	23	22	2	4	202	198	20	22	ĕ	ĭ	170	156	15
21	1	10	262	274	11	21	6	2	605	590	13	22	2	5	423	390	14	22	8	2	341	311	16
21	1	12	304	281	10	21	6	3	366	361	9	22	2	6	699	641	13	22	8	3	343	367	11
21	2	0	426	430	25	21	6	4	263	262	10	22	2	7	398	416	10	22	8	4	523	477	19
21	2	2	226	234	В	21	6	5	497	507	13	22	2	8	407	380	9	22	8.	5	223	220	13
21	2	3	306	297	12	21	6	6	252	233	10	22	2	10	257	223	10	22	8	6	337	289	10
21	2	4 E	210	238		21	6	7	198	191	27	22	2	12	309	291	10	22	9	1	177	167	16
21	2	2	707	200	12	21	6	10	288	278	11	22	3	2	221	207	.9	22	9	2	167	152	17
21	2	7	400	402	11	21	2	10	2/1	217	13	22	3	3	313	315	13	22	.9	3	350	324	25
21	2	Ŕ	217	216	10	21	7	ž	310	279	15	22	2	5	222	242	2	22	10	0	203	2/3	10
21	2	9	229	218	12	21	7	5	341	355	10	22	7	ă	301	285	8	23	1	2	287	230	41
21	2	10	343	321	9	21	7	6	297	278	14	22	3	ĕ	273	311	14	23	ī	3	385	349	10
21	2	11	143	165	17	21	7	7	294	298	14	22	3	10	215	216	12	23	ī	4	185	209	14
21	2	12	248	235	12	21	7	9	261	246	12	22	3	11	253	234	11	23	1	5	290	294	9
21	3	2	276	299	7	21	8	0	178	166	13	22	3	12	259	269	12	23	1	6	521	469	12
21	3	3	398	387	22	21	8	2	134	131	19	22	4	2	579	524	13	23	1	7	238	200	11
21	2	4	183	165	11	21	8	4	209	210	13	22	4	3	715	688	13	23	1	8	364	372	9
21	2	2	330	324	8	21	8	7	225	220	13	22	4	4	337	317	15	23	1	10	331	323	9
21	2	7	575	512	15	21	3	3	1/2	1/6	22	22	4	5	260	267	. 9	23	1	12	245	220	12
21	3	Ŕ	211	196	11	21	11	ı ı	219	230	28	22	4	6	337	298	15	23	2	0	483	542	39
21	3	9	444	422	12	22	1	ō	1614	1614	10	22	* 5	0	311 777	200	ע בר	22	4	2	241	239	10
21	ž	10	323	304	8	22	ň	ĭ	915	887	11	22	5	ĩ	450	479 575	23	23	4	с С	200	249	13
21	3	11	308	296	10	22	ŏ	2	1215	1205	16	22	5	2	450	442	21	23	2	7	491	545	3
21	3	12	323	290	13	22	Ō	3	268	276	7	22	5		332	289	Ĩ.	23	2	Å	237	234	10

1

н	K	L	Fobs	Fcalc	SigF	н	K	L	Fobs	Fcalc	SiqF	н	K	L	Fobs	Fcalc	SiqF	н	к	L	Fobs	Fcalc	SiaF
-	-	-				-	-	-				-	-	-				-	-	-			
22	~	• •	260				-			070	_		~	-					_	_			
23	2	11	260	233	13	24	1	4	307	272	7	24	7	6	410	371	19	26	0	2	546	548	12
23	2	2	260	201	42	24	- 1	S	490	440	12	24		{	274	237	1/	26	0	3	832	856	12
23	2	4	202	180	10	24	1	2	073	041	14	24	0	2	321	204	10	20	U V	4	280	290	.8
23	2	4	277	259	10	24	1	`	542	520	20	24	0	2	403	305	10	20	~	2	/90	740	18
23	3	6	522	520	าคื	24	ī	ğ	150	136	15	24	8	4	383	365	10	20	Ň	7	1170	336	12
23	3	7	377	359	19	24	î	10	148	158	21	25	ĭ	2	275	246	A A	26	ň	Ŕ	343	337	13
23	3	8	230	204	10	24	ī	īī	482	469	20	25	ĩ	3	193	158	21	26	ň	ä	203	278	10
23	3	10	271	252	10	24	2	ī	659	689	68	25	ĩ	4	259	229	Ĩ	26	ň	าา์	510	485	14
23	4	1	334	437	16	24	2	2	496	529	11	25	ī	5	538	561	14	26	ī	Ō	1262	1247	34
23	4	2	176	181	12	24	2	3	182	162	11	25	ī	7	342	331	8	26	ī	2	409	392	10
23	4	3	618	622	13	24	2	4	385	372	9	25	1	11	192	193	14	26	ī	3	469	449	īī
23	4	5	212	190	10	24	2	5	421	458	10	25	2	0	595	619	54	26	1	4	676	667	14
23	4	6	174	152	12	24	2	6	473	451	11	25	2	2	339	328	7	26	1	5	240	247	10
23	4	7	602	596	13	24	2	8	300	278	12	25	2	4	458	478	10	26	1	6	819	786	13
23	4	9	346	334	13	24	2	9	290	262	9	25	2	5	286	310	9	26	1	7	314	293	9
23	4	11	399	367	11	24	2	10	153	150	16	25	2	6	496	481	12	26	1	8	410	388	10
23	5	2	376	387	9	24	2	11	204	161	13	25	2	8	403	363	12	26	1	9	213	219	14 N
23	2	3	351	314	8	24	3	2	489	472	12	25	3	2	278	290	8	26	1	10	448	435	<u>1</u> 3 თ
23	2	4	672	645	14	24	3	3	123	67	15	25	3	3	375	303	9	26	2	2	252	232	16 0
23	5	5	594	Z19 542	12	24	3	4	350	321	1/	25	3	5	334	326	.9	26	2	3	531	473	11
23	5	2	209	242	14	24	2	2	207	162	10	25	3	5	220	220	10	26	2	4	343	341	В
23	5	Ŕ	451	102	12	24	2	6	301	363	16	25	3	6	398	368	12	26	2	5	181	218	12
23	5	10	532	496	13	24	4	2	314	125	15	25	2	0	514	293	12	20	2		4/4	424	11
23	6	ĩ	355	377	Ĩ	24	4	2	156	227	22	25	2	1	300	765	10	20	2	0	105	300	34
23	6	3	599	545	13	24	4	ă	228	188	10	25	Ā	2	409	411	10	20	2	10	201	205	14
23	ē	4	187	186	21	24	4	â	302	307	ii	25	4	ã	255	275	10	26	â	2	259	265	10
23	6	5	408	380	9	24	4	9	237	239	19	25	4	5	309	310	- 8	26	3	4	338	316	8
23	6	7	415	405	10	24	4	10	204	181	23	25	4	6	541	486	13	26	3	6	292	276	ğ
23	6	9	364	323	10	24	5	0	580	564	14	25	4	8	384	363	10	26	3	8	183	175	14
23	7	0	217	214	11	24	5	3	395	344	11	25	4	10	389	349	10	26	3	9	140	151	18
23	7	4	391	347	16	24	5	6	255	285	15	25	5	1	773	796	34	26	4	4	131	136	16
23	8	5	169	167	16	24	5	7	295	245	10	25	5	3	737	701	27	26	4	5	140	132	15
23	.9	2	198	169	28	24	5	8	379	338	19	25	5	5	576	587	13	26	4	6	140	151	16
23	10	1	202	168	15	24	5	9	310	313	10	25	5	6	243	230	12	26	4	7	188	219	13
24	0	2	1047	1022	11	24	6	0	314	319	11	25	5	7	426	424	16	26	4	9	204	220	17
24	0	2	311	622	2/	24	6	2	568	561	19	25	5	9	368	369	9	26	5	2	350	383	19
24	0	2	/20	204	12	24	6	3	332	361	9	25	6	0	383	412	15	26	5	4	309	272	9
24	Ň	2	770	334 710	17	24	2	4	401	408	14	25	6	4	43/	485	36	26	2	5	175	150	14
24	ň	5	880	710	12	24	2	2	390	3/8	12	25	b c	4	220	530	13	26	5	6	226	222	12
24	ň	ลี	937	938	12	24	6	7	611	207	12	25	6	2	220	242	13	26	2		292	281	10
24	ň	7	594	553	14	27	2	é	301	240	10	20	2	ю р	234	240	10	20	2	0	267	203	11
24	ŏ	Ŕ	578	595	13	24	7	0	333	303	10	25	5	5	290	267	10	20	6	2	439	4/2	36
24	ō	<u>ē</u>	690	671	14	24	7	ĭ	304	302	14	25	Å	2	281	250	27	20	6	3	212	220	30
24	Ō	10	304	277	10	24	,	2	305	211	<u> </u>	25	2	ĩ	170	170	10	20	4	2	42J 671		14
24	ō	īī	542	475	13	24	7	3	484	490	14	25	10	1	164	191	19	20	6	6	303	222	14
24	1	2	836	779	12	24	7	4	378	376	10	26	Ĩŏ	ō	622	620	13	26	6	7	290	293	16
24	1	3	659	666	12	24	7	5	388	379	12	26	õ	ī	1246	1205	19	26	7	Ó	363	355	10
								-						-			* *	~~~		•	200	لے نے ہے۔	- V

н	K	L	Fobs	Fcalc	SigF	н	K	L	Fobs	Fcalc	SigF	н	K	L	Fobs	Fcalc	SigF	н	K	L	Fobs	Fcalc	SiqF
-	-	-				-	-	-				-	-	-				-	-	-			
26	7	1	269	257	11	28	0	0	815	788	13	29	2	4	283	247	9	30	6	1	310	326	28
26	7	2	579	552	14	28	0	1	551	564	12	29	2	5	294	295	9	30	6	3	216	242	31
26	7	3	241	220	26	28	0	2	804	775	31	29	2	7	414	391	14	30	7	ō	376	364	13
26	7	4	565	537	14	28	0	3	313	267	9	29	2	9	222	216	14	30	8	0	222	186	14
26	8	1	240	212	12	28	0	4	397	401	9	29	3	0	428	411	29	30	8	1	234	238	17
27	1	2	244	239	15	28	0	5	317	290	11	29	3	4	375	343	9	31	1	3	231	211	26
27	1	3	185	160	12	28	0	6	904	815	13	29	3	5	138	140	18	31	1	4	193	213	13
27	1	5	255	281	10	28	0	7	292	292	11	29	3	6	405	344	10	31	1	7	324	320	11
27	1	6	352	344	10	28	0	.8	540	513	22	29	3	7	246	238	16	31	2	3	251	231	11
27	1	/	356	344	9	28	0	10	404	358	11	29	3	8	439	402	11	31	2	4	208	209	16
27	1	8	342	320	.9	28	1	Ţ	613	563	14	29	4	0	277	288	31	31	2	5	238	223	12
21	12	2	200	184	51	28	1	3	583	535	13	29	4	Ŧ	345	396	12	31	2	6	469	428	12
27	2		216	200	12	20		*	210	191	11	29	4	3	470	436	14	31	2	1	531	523	14
27	2	Ē	200	309	10	20	1	2	202	212	13	29	4	4	248	207	11	31	3	3	433	392	13
27	2	Ā	314	290	10	20	1	7	634	573	14	29	4	27	408	381	10	21	3	2	310	283	10
27	2	7	270	242	ä	20	1	Â	317	375	10	29	5	á	440	415	27	21	2	2	401	441	11
27	2	Ŕ	304	274	10	28	ī	ğ	353	323	10	29	5	2	500	500	15	21	2	2	4/1	447	11
27	2	10	246	218	20	28	2	2	334	317	15	29	5	จั	229	230	12	31	Ā	Å	295	273	N 51
27	3	0	493	470	32	28	2	3	604	563	14	29	5	4	501	485	15	31	4	6	429	404	26 .
27	3	1	453	409	12	28	2	4	480	412	ii	29	ŝ	5	214	181	24	31	5	ž	425	389	4 7
27	3	2	329	287	14	28	2	5	301	284	-9	29	5	6	428	426	27	32	ō	ī	625	632	14
27	3	3	185	166	12	28	2	6	271	265	10	29	6	3	441	399	19	32	Ó	2	302	325	12
27	3	4	347	308	8	28	2	8	339	319	9	29	6	4	239	238	13	32	0	3	431	435	12
27	3	5	394	362	10	28	3	3	178	170	12	29	8	1	162	155	19	32	0	5	312	318	10
27	3	6	274	233	14	28	3	4	241	245	21	30	0	0	196	205	12	32	0	6	158	110	20
27	3	7	197	206	13	28	3	5	214	184	11	30	0	1	560	508	12	32	0	7	438	420	10
21	3	8	324	294	16	28	3	6	229	217	11	30	0	2	200	210	11	32	1	0	529	528	21
27	3	9	165	167	16	28	4	7	202	233	14	30	0	3	419	406	19	32	1	1	265	289	33
21	4	U 1	444	450	11	28	4	8	197	190	14	30	0	4	147	121	14	32	1	2	303	272	15
21	4	1	3/3	403	9	28	2	1	410	43/	17	30	0	5	462	443	13	32	1	3	214	205	13
27	4	2	300	343	21	28	2	5	294	256	11	30	0	6	570	551	18	32	1	4	279	261	10
27	7	2	224	203	11	28	2	5	180	193	21	30	0	7	471	470	13	32	1	5	196	208	14
27	Ā	Ē	440	122	2	20	2	~	315	283	10	30	U V	8	448	407	11	32	1	6	416	406	11
27	Ā	6	394	350	10	20	2	2	4/0	472	12	30	Ţ	1	397	428	24	32	1	7	224	192	13
27	4	7	255	256	11	28	6	2	345	404	10	30	1	<u> </u>	261	200	2/	32	2	2	221	163	18
27	4	8	209	207	13	28	ĕ	Ā	369	394	14	30	î	5	201	220	10	34	2	*	202	239	11
27	4	9	316	314	10	28	6	5	223	211	13	30	i	ã	396	369	10	32	2	2	230	240	12
27	5	Ō	310	328	32	28	6	6	379	349	12	30	î	7	275	275	18	32	ล้	4	242	225	30
27	5	2	408	394	11	28	7	0	175	152	19	30	ī	Ř	459	420	11	32	3	6	252	248	13
27	5	3	444	415	11	28	7	1	393	385	11	30	ž	3	324	338	19	32	4	3	229	234	23
27	5	4	441	418	12	28	7	3	384	364	13	30	2	5	245	245	23	32	6	ō	260	254	18
27	5	5	445	417	10	28	8	0	206	174	14	30	2	6	160	167	16	32	6	i	270	283	16
27	5	6	398	356	9	29	1	0	539	579	12	30	2	7	160	154	17	32	7	Ō	169	167	18
27	5	7	410	392	10	29	1	2	488	481	33	30	3	2	278	25 9	9	33	1	3	254	264	11
27	5	8	361	317	16	. 29	1	3	237	200	19	30	3	4	161	126	20	33	1	4	139	143	19
27	6	3	275	281	12	29	1	4	334	328	8	30	3	7	168	195	16	33	1	5	269	264	13
21	6	4	261	228	18	29	1	6	439	446	11	30	4	6	222	243	23	33	2	1	327	347	34
27	6	5	458	446	12	29	2	3	288	275	9	30	5	4	206	204	24	33	2	3	186	171	15

Page 15

ACKNOWLEDGMENTS

I would like to thank the entire Chemistry department at Iowa State, because in my graduate career I have had contact with almost every person in some context. Many useful ideas have been generated, information transferred, and ever important moral support given.

Specifically, I would like to thank the following people:

Dr. J. G. Verkade for his guidance and encouragement in all my endeavors.

Dr. R. J. Angelici and his research group for helpful discussions, song, and the use of their instrumentation.

Dr. Dave Scott for numerous hours of assistance and instruction in multi-nuclear NMR.

Dr. D.C. Johnson for his assistance in electrochemical techniques.

Ron Davis, Mark Mason, Ray Garant, Mary Hardy, Susan Peterson, Bill Bennett, Kevin Ambrisco, Dr. R. V. Swamy, Dr. A. P. Kumari, and Dr. A. Wroblewski, my coworkers, for their help both in and out of the laboratory.

258